Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge

Autores
Richiano, Sebastián Miguel; Aguirre, Marina Laura; Castellanos, Ignacio; Davies, Karen; Farinati, Ester
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Late Quaternary marine molluscan skeletal concentrations from Argentina constitute a remarkable record of variations in palaeoceanographical conditions during interglacial times (mainly ca. 125 ka to present). Particularly, the Golfo San Jorge coastal area represents an extraordinary geographical zone to target from different points of view, mainly due to its linkage between northern and southern Patagonia, characterized by particular and contrasting physico-chemical conditions with direct consequences for littoral marine communities, determining their composition and structure. Among varied biological activities controlled by different environmental factors (i.e., substrate nature, sedimentation rates, water depth, sea surface temperature, salinity, nutrients-productivity), bioerosion traces can provide palaeoenvironmental evidence with important implications for palaeoclimate interpretations. In addition, the application of bioerosion patterns regionally and through time is a recent valuable worthy palaeoenvironmental tool not as yet developed for Patagonia. We attempted to characterize, qualitatively/semiquantitatively, the ichnotaxonomic composition of the coastal area of northern Golfo San Jorge since the Late Pleistocene; to compare results with those obtained for other geographical areas along Patagonia and the Bonaerensian coastal sectors; lastly, to evaluate its palaeoenvironmental/palaeoclimatic significance in a clue area in terms of circulation patterns near the Southern Ocean climatic pump. At Bustamante (Northern Patagonia Frontal System) Domichnia traces were dominant during the Late Pleistocene while Praedichnia in the mid-Holocene. Bustamante exhibits the highest ichnodiversity for the whole Argentinean coastal area. Ichnodiversity is not strongly different between Late Pleistocene and mid-Holocene interglacials and compared to present; however, the relative abundance of some ichnotaxa (e.g., Oichnus, Iramena, Pennatichnus, at Camarones; Oichnus, Iramena, Pinaceocladichnus, at Bustamante) differs across time. These variations, particularly the highest abundance in the Late Pleistocene (mainly Last Interglacial) of traces made by bryozoans- associated at present with modern enhanced productivity levels and coastal fronts in the Argentine continental shelf- point to higher productivity and more intensified northern Patagonia Front, as a result of a different palaeocirculation pattern, reinforcing previous independent sources of evidence based on molluscan palaeobiogeographical analyses.
Facultad de Ciencias Naturales y Museo
Materia
Geología
Ichnology
Gastropods
Bivalves
Bryozoans activity
Pleistocene
Holocene
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/118356

id SEDICI_f1a5829f310df511f68b93e65c1993ad
oai_identifier_str oai:sedici.unlp.edu.ar:10915/118356
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San JorgeRichiano, Sebastián MiguelAguirre, Marina LauraCastellanos, IgnacioDavies, KarenFarinati, EsterGeologíaIchnologyGastropodsBivalvesBryozoans activityPleistoceneHoloceneLate Quaternary marine molluscan skeletal concentrations from Argentina constitute a remarkable record of variations in palaeoceanographical conditions during interglacial times (mainly ca. 125 ka to present). Particularly, the Golfo San Jorge coastal area represents an extraordinary geographical zone to target from different points of view, mainly due to its linkage between northern and southern Patagonia, characterized by particular and contrasting physico-chemical conditions with direct consequences for littoral marine communities, determining their composition and structure. Among varied biological activities controlled by different environmental factors (i.e., substrate nature, sedimentation rates, water depth, sea surface temperature, salinity, nutrients-productivity), bioerosion traces can provide palaeoenvironmental evidence with important implications for palaeoclimate interpretations. In addition, the application of bioerosion patterns regionally and through time is a recent valuable worthy palaeoenvironmental tool not as yet developed for Patagonia. We attempted to characterize, qualitatively/semiquantitatively, the ichnotaxonomic composition of the coastal area of northern Golfo San Jorge since the Late Pleistocene; to compare results with those obtained for other geographical areas along Patagonia and the Bonaerensian coastal sectors; lastly, to evaluate its palaeoenvironmental/palaeoclimatic significance in a clue area in terms of circulation patterns near the Southern Ocean climatic pump. At Bustamante (Northern Patagonia Frontal System) Domichnia traces were dominant during the Late Pleistocene while Praedichnia in the mid-Holocene. Bustamante exhibits the highest ichnodiversity for the whole Argentinean coastal area. Ichnodiversity is not strongly different between Late Pleistocene and mid-Holocene interglacials and compared to present; however, the relative abundance of some ichnotaxa (e.g., Oichnus, Iramena, Pennatichnus, at Camarones; Oichnus, Iramena, Pinaceocladichnus, at Bustamante) differs across time. These variations, particularly the highest abundance in the Late Pleistocene (mainly Last Interglacial) of traces made by bryozoans- associated at present with modern enhanced productivity levels and coastal fronts in the Argentine continental shelf- point to higher productivity and more intensified northern Patagonia Front, as a result of a different palaeocirculation pattern, reinforcing previous independent sources of evidence based on molluscan palaeobiogeographical analyses.Facultad de Ciencias Naturales y Museo2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf38-53http://sedici.unlp.edu.ar/handle/10915/118356enginfo:eu-repo/semantics/altIdentifier/issn/0924-7963info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmarsys.2017.07.010info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:27:50Zoai:sedici.unlp.edu.ar:10915/118356Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:27:50.74SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
title Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
spellingShingle Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
Richiano, Sebastián Miguel
Geología
Ichnology
Gastropods
Bivalves
Bryozoans activity
Pleistocene
Holocene
title_short Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
title_full Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
title_fullStr Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
title_full_unstemmed Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
title_sort Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge
dc.creator.none.fl_str_mv Richiano, Sebastián Miguel
Aguirre, Marina Laura
Castellanos, Ignacio
Davies, Karen
Farinati, Ester
author Richiano, Sebastián Miguel
author_facet Richiano, Sebastián Miguel
Aguirre, Marina Laura
Castellanos, Ignacio
Davies, Karen
Farinati, Ester
author_role author
author2 Aguirre, Marina Laura
Castellanos, Ignacio
Davies, Karen
Farinati, Ester
author2_role author
author
author
author
dc.subject.none.fl_str_mv Geología
Ichnology
Gastropods
Bivalves
Bryozoans activity
Pleistocene
Holocene
topic Geología
Ichnology
Gastropods
Bivalves
Bryozoans activity
Pleistocene
Holocene
dc.description.none.fl_txt_mv Late Quaternary marine molluscan skeletal concentrations from Argentina constitute a remarkable record of variations in palaeoceanographical conditions during interglacial times (mainly ca. 125 ka to present). Particularly, the Golfo San Jorge coastal area represents an extraordinary geographical zone to target from different points of view, mainly due to its linkage between northern and southern Patagonia, characterized by particular and contrasting physico-chemical conditions with direct consequences for littoral marine communities, determining their composition and structure. Among varied biological activities controlled by different environmental factors (i.e., substrate nature, sedimentation rates, water depth, sea surface temperature, salinity, nutrients-productivity), bioerosion traces can provide palaeoenvironmental evidence with important implications for palaeoclimate interpretations. In addition, the application of bioerosion patterns regionally and through time is a recent valuable worthy palaeoenvironmental tool not as yet developed for Patagonia. We attempted to characterize, qualitatively/semiquantitatively, the ichnotaxonomic composition of the coastal area of northern Golfo San Jorge since the Late Pleistocene; to compare results with those obtained for other geographical areas along Patagonia and the Bonaerensian coastal sectors; lastly, to evaluate its palaeoenvironmental/palaeoclimatic significance in a clue area in terms of circulation patterns near the Southern Ocean climatic pump. At Bustamante (Northern Patagonia Frontal System) Domichnia traces were dominant during the Late Pleistocene while Praedichnia in the mid-Holocene. Bustamante exhibits the highest ichnodiversity for the whole Argentinean coastal area. Ichnodiversity is not strongly different between Late Pleistocene and mid-Holocene interglacials and compared to present; however, the relative abundance of some ichnotaxa (e.g., Oichnus, Iramena, Pennatichnus, at Camarones; Oichnus, Iramena, Pinaceocladichnus, at Bustamante) differs across time. These variations, particularly the highest abundance in the Late Pleistocene (mainly Last Interglacial) of traces made by bryozoans- associated at present with modern enhanced productivity levels and coastal fronts in the Argentine continental shelf- point to higher productivity and more intensified northern Patagonia Front, as a result of a different palaeocirculation pattern, reinforcing previous independent sources of evidence based on molluscan palaeobiogeographical analyses.
Facultad de Ciencias Naturales y Museo
description Late Quaternary marine molluscan skeletal concentrations from Argentina constitute a remarkable record of variations in palaeoceanographical conditions during interglacial times (mainly ca. 125 ka to present). Particularly, the Golfo San Jorge coastal area represents an extraordinary geographical zone to target from different points of view, mainly due to its linkage between northern and southern Patagonia, characterized by particular and contrasting physico-chemical conditions with direct consequences for littoral marine communities, determining their composition and structure. Among varied biological activities controlled by different environmental factors (i.e., substrate nature, sedimentation rates, water depth, sea surface temperature, salinity, nutrients-productivity), bioerosion traces can provide palaeoenvironmental evidence with important implications for palaeoclimate interpretations. In addition, the application of bioerosion patterns regionally and through time is a recent valuable worthy palaeoenvironmental tool not as yet developed for Patagonia. We attempted to characterize, qualitatively/semiquantitatively, the ichnotaxonomic composition of the coastal area of northern Golfo San Jorge since the Late Pleistocene; to compare results with those obtained for other geographical areas along Patagonia and the Bonaerensian coastal sectors; lastly, to evaluate its palaeoenvironmental/palaeoclimatic significance in a clue area in terms of circulation patterns near the Southern Ocean climatic pump. At Bustamante (Northern Patagonia Frontal System) Domichnia traces were dominant during the Late Pleistocene while Praedichnia in the mid-Holocene. Bustamante exhibits the highest ichnodiversity for the whole Argentinean coastal area. Ichnodiversity is not strongly different between Late Pleistocene and mid-Holocene interglacials and compared to present; however, the relative abundance of some ichnotaxa (e.g., Oichnus, Iramena, Pennatichnus, at Camarones; Oichnus, Iramena, Pinaceocladichnus, at Bustamante) differs across time. These variations, particularly the highest abundance in the Late Pleistocene (mainly Last Interglacial) of traces made by bryozoans- associated at present with modern enhanced productivity levels and coastal fronts in the Argentine continental shelf- point to higher productivity and more intensified northern Patagonia Front, as a result of a different palaeocirculation pattern, reinforcing previous independent sources of evidence based on molluscan palaeobiogeographical analyses.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/118356
url http://sedici.unlp.edu.ar/handle/10915/118356
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0924-7963
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmarsys.2017.07.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
38-53
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616156610035712
score 13.070432