Multi-expert multi-criteria decision support model for traffic control

Autores
Gramajo, Sergio D.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Multi-Expert Multi-Criteria Decision Making
Linguistic Information
Traffic Control
información
Intelligent agents
Linguistics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23596

id SEDICI_eff2c4e0fcef2d6cf698f19905bf90f6
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23596
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Multi-expert multi-criteria decision support model for traffic controlGramajo, Sergio D.Ciencias InformáticasMulti-Expert Multi-Criteria Decision MakingLinguistic InformationTraffic ControlinformaciónIntelligent agentsLinguisticsThe common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23596enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:18Zoai:sedici.unlp.edu.ar:10915/23596Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:19.625SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Multi-expert multi-criteria decision support model for traffic control
title Multi-expert multi-criteria decision support model for traffic control
spellingShingle Multi-expert multi-criteria decision support model for traffic control
Gramajo, Sergio D.
Ciencias Informáticas
Multi-Expert Multi-Criteria Decision Making
Linguistic Information
Traffic Control
información
Intelligent agents
Linguistics
title_short Multi-expert multi-criteria decision support model for traffic control
title_full Multi-expert multi-criteria decision support model for traffic control
title_fullStr Multi-expert multi-criteria decision support model for traffic control
title_full_unstemmed Multi-expert multi-criteria decision support model for traffic control
title_sort Multi-expert multi-criteria decision support model for traffic control
dc.creator.none.fl_str_mv Gramajo, Sergio D.
author Gramajo, Sergio D.
author_facet Gramajo, Sergio D.
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Multi-Expert Multi-Criteria Decision Making
Linguistic Information
Traffic Control
información
Intelligent agents
Linguistics
topic Ciencias Informáticas
Multi-Expert Multi-Criteria Decision Making
Linguistic Information
Traffic Control
información
Intelligent agents
Linguistics
dc.description.none.fl_txt_mv The common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description The common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23596
url http://sedici.unlp.edu.ar/handle/10915/23596
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260121992822784
score 13.13397