Multi-expert multi-criteria decision support model for traffic control
- Autores
- Gramajo, Sergio D.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Multi-Expert Multi-Criteria Decision Making
Linguistic Information
Traffic Control
información
Intelligent agents
Linguistics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23596
Ver los metadatos del registro completo
id |
SEDICI_eff2c4e0fcef2d6cf698f19905bf90f6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23596 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Multi-expert multi-criteria decision support model for traffic controlGramajo, Sergio D.Ciencias InformáticasMulti-Expert Multi-Criteria Decision MakingLinguistic InformationTraffic ControlinformaciónIntelligent agentsLinguisticsThe common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23596enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:18Zoai:sedici.unlp.edu.ar:10915/23596Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:19.625SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Multi-expert multi-criteria decision support model for traffic control |
title |
Multi-expert multi-criteria decision support model for traffic control |
spellingShingle |
Multi-expert multi-criteria decision support model for traffic control Gramajo, Sergio D. Ciencias Informáticas Multi-Expert Multi-Criteria Decision Making Linguistic Information Traffic Control información Intelligent agents Linguistics |
title_short |
Multi-expert multi-criteria decision support model for traffic control |
title_full |
Multi-expert multi-criteria decision support model for traffic control |
title_fullStr |
Multi-expert multi-criteria decision support model for traffic control |
title_full_unstemmed |
Multi-expert multi-criteria decision support model for traffic control |
title_sort |
Multi-expert multi-criteria decision support model for traffic control |
dc.creator.none.fl_str_mv |
Gramajo, Sergio D. |
author |
Gramajo, Sergio D. |
author_facet |
Gramajo, Sergio D. |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Multi-Expert Multi-Criteria Decision Making Linguistic Information Traffic Control información Intelligent agents Linguistics |
topic |
Ciencias Informáticas Multi-Expert Multi-Criteria Decision Making Linguistic Information Traffic Control información Intelligent agents Linguistics |
dc.description.none.fl_txt_mv |
The common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented. Eje: Workshop Agentes y sistemas inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The common use of IP networking structures implies the increasing demand of resources by users and applications. For this reason, organizations must guarantee adequate conditions for critical traffic. To face this problem, network administrators constantly need to make decisions regarding this situation by means of using different strategies and tools of Quality of Service (QoS), such as Traffic Control (TC). Such decisions can be modeled by a decision support system that handles subjective information about decision maker’s perceptions. This information involves uncertainty and requires precise evaluation of traffic quality demanded. Subjectivity is modeled by using linguistic information (LI) in order to choose adequate solution to networking performance problems. This paper proposes a Multi-Expert (ME) Multi-Criteria (MC) Linguistic Decision Making (LDM) Model for TC in networking. Finally, an application example to show the model’s benefits is presented. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23596 |
url |
http://sedici.unlp.edu.ar/handle/10915/23596 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260121992822784 |
score |
13.13397 |