Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains
- Autores
- Wheeler, Jonathan; Páez, María Augusta; Guillén Gosálbez, Gonzalo; Mele, Fernando Daniel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Multi-objective optimization (MOO) is widely applied in sustainability problems where several objectives must be accounted for in the analysis. Unfortunately, its complexity grows with the number of objectives, which hampers its practical use. In this paper, we simplify MOO problems via their combination with multi-attribute decision-making (MADM) methods. The approach identifies a unique Pareto solution of the MOO problem, which best reflects the decision-makers’ preferences, by using weighting factors generated via four well-known MADM methods: SWING, SMART, AHP and TRADE OFF. The capabilities of this approach are illustrated through its application to the design and planning of a sugar/ethanol supply chain using questionnaires filled in by academic experts in the problem. We find that the weights obtained using MADM algorithms may well differ from the ones given by standard life-cycle assessment methods employed in systems engineering problems. Overall, our approach simplifies the MOO problem by identifying solutions consistent with the decision-makers’ preferences and by providing valuable insight on how these preferences are articulated in practice.
Fil: Wheeler, Jonathan. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Páez, María Augusta. University of Manchester; Reino Unido
Fil: Guillén Gosálbez, Gonzalo. Imperial College London; Reino Unido
Fil: Mele, Fernando Daniel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina - Materia
-
Sustainability
Multi-Criteria Optimization
Environmental Impact
Biorefinery Design
Decision-Making - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81327
Ver los metadatos del registro completo
id |
CONICETDig_a7ac832b0abc662e20afee9ed1ac1b4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81327 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chainsWheeler, JonathanPáez, María AugustaGuillén Gosálbez, GonzaloMele, Fernando DanielSustainabilityMulti-Criteria OptimizationEnvironmental ImpactBiorefinery DesignDecision-Makinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Multi-objective optimization (MOO) is widely applied in sustainability problems where several objectives must be accounted for in the analysis. Unfortunately, its complexity grows with the number of objectives, which hampers its practical use. In this paper, we simplify MOO problems via their combination with multi-attribute decision-making (MADM) methods. The approach identifies a unique Pareto solution of the MOO problem, which best reflects the decision-makers’ preferences, by using weighting factors generated via four well-known MADM methods: SWING, SMART, AHP and TRADE OFF. The capabilities of this approach are illustrated through its application to the design and planning of a sugar/ethanol supply chain using questionnaires filled in by academic experts in the problem. We find that the weights obtained using MADM algorithms may well differ from the ones given by standard life-cycle assessment methods employed in systems engineering problems. Overall, our approach simplifies the MOO problem by identifying solutions consistent with the decision-makers’ preferences and by providing valuable insight on how these preferences are articulated in practice.Fil: Wheeler, Jonathan. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Páez, María Augusta. University of Manchester; Reino UnidoFil: Guillén Gosálbez, Gonzalo. Imperial College London; Reino UnidoFil: Mele, Fernando Daniel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaPergamon-Elsevier Science Ltd2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81327Wheeler, Jonathan; Páez, María Augusta; Guillén Gosálbez, Gonzalo; Mele, Fernando Daniel; Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 113; 5-2018; 11-310098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkhttps://www.sciencedirect.com/science/article/pii/S0098135418300759?via%3Dihub#!inghub.elsevier.com/retrieve/pii/S0098135418300759info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.compchemeng.2018.02.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:52Zoai:ri.conicet.gov.ar:11336/81327instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:52.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
title |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
spellingShingle |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains Wheeler, Jonathan Sustainability Multi-Criteria Optimization Environmental Impact Biorefinery Design Decision-Making |
title_short |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
title_full |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
title_fullStr |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
title_full_unstemmed |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
title_sort |
Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains |
dc.creator.none.fl_str_mv |
Wheeler, Jonathan Páez, María Augusta Guillén Gosálbez, Gonzalo Mele, Fernando Daniel |
author |
Wheeler, Jonathan |
author_facet |
Wheeler, Jonathan Páez, María Augusta Guillén Gosálbez, Gonzalo Mele, Fernando Daniel |
author_role |
author |
author2 |
Páez, María Augusta Guillén Gosálbez, Gonzalo Mele, Fernando Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Sustainability Multi-Criteria Optimization Environmental Impact Biorefinery Design Decision-Making |
topic |
Sustainability Multi-Criteria Optimization Environmental Impact Biorefinery Design Decision-Making |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Multi-objective optimization (MOO) is widely applied in sustainability problems where several objectives must be accounted for in the analysis. Unfortunately, its complexity grows with the number of objectives, which hampers its practical use. In this paper, we simplify MOO problems via their combination with multi-attribute decision-making (MADM) methods. The approach identifies a unique Pareto solution of the MOO problem, which best reflects the decision-makers’ preferences, by using weighting factors generated via four well-known MADM methods: SWING, SMART, AHP and TRADE OFF. The capabilities of this approach are illustrated through its application to the design and planning of a sugar/ethanol supply chain using questionnaires filled in by academic experts in the problem. We find that the weights obtained using MADM algorithms may well differ from the ones given by standard life-cycle assessment methods employed in systems engineering problems. Overall, our approach simplifies the MOO problem by identifying solutions consistent with the decision-makers’ preferences and by providing valuable insight on how these preferences are articulated in practice. Fil: Wheeler, Jonathan. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Páez, María Augusta. University of Manchester; Reino Unido Fil: Guillén Gosálbez, Gonzalo. Imperial College London; Reino Unido Fil: Mele, Fernando Daniel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina |
description |
Multi-objective optimization (MOO) is widely applied in sustainability problems where several objectives must be accounted for in the analysis. Unfortunately, its complexity grows with the number of objectives, which hampers its practical use. In this paper, we simplify MOO problems via their combination with multi-attribute decision-making (MADM) methods. The approach identifies a unique Pareto solution of the MOO problem, which best reflects the decision-makers’ preferences, by using weighting factors generated via four well-known MADM methods: SWING, SMART, AHP and TRADE OFF. The capabilities of this approach are illustrated through its application to the design and planning of a sugar/ethanol supply chain using questionnaires filled in by academic experts in the problem. We find that the weights obtained using MADM algorithms may well differ from the ones given by standard life-cycle assessment methods employed in systems engineering problems. Overall, our approach simplifies the MOO problem by identifying solutions consistent with the decision-makers’ preferences and by providing valuable insight on how these preferences are articulated in practice. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81327 Wheeler, Jonathan; Páez, María Augusta; Guillén Gosálbez, Gonzalo; Mele, Fernando Daniel; Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 113; 5-2018; 11-31 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81327 |
identifier_str_mv |
Wheeler, Jonathan; Páez, María Augusta; Guillén Gosálbez, Gonzalo; Mele, Fernando Daniel; Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 113; 5-2018; 11-31 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkhttps://www.sciencedirect.com/science/article/pii/S0098135418300759?via%3Dihub#!inghub.elsevier.com/retrieve/pii/S0098135418300759 info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/j.compchemeng.2018.02.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268887648829440 |
score |
13.13397 |