Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19

Autores
Ferraris, Ignacio; Gabbanelli, Lucia; Mileta, Srecko Estanislao; Seijas, Leticia María
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Actualmente las organizaciones disponen de conjuntos de datos cada vez más grandes y complejos. Para encontrar la información requerida, descubrir patrones novedosos y realizar una categorización se utilizan técnicas de descubrimiento de conocimiento en bases de datos (KDD) y data mining. En particular, las bases de datos hospitalarias tienen un gran potencial para explorar patrones ocultos en conjuntos de datos de dominio médico debido a su naturaleza voluminosa, heterogénea y distribuida. Estos patrones se pueden utilizar para el diagnóstico clínico y gestión de recursos, entre otros. Dada la situación de pandemia que se ha vivido recientemente, el descubrimiento de conocimiento para la eficiencia en la toma de decisiones se vuelve imprescindible. Este trabajo presenta la utilización de técnicas combinadas de clustering k-means, k-prototypes y mapas auto-organizados SOM del paradigma competitivo no supervisado, sobre la base de datos pública con casos COVID-19 a nivel nacional, del Ministerio de Salud de Argentina. Los resultados de k-prototypes permitieron obtener un panorama general de la distribución de las muestras, mientras que los SOM, con medidas de evaluación del modelo de gran calidad, posibilitaron un análisis más completo, profundo y visual. Adicionalmente, se presenta un software para facilitar a los expertos el estudio de resultados.
Organizations today have increasingly large and complex data sets. Knowledge discovery in databases (KDD) and data mining techniques are used to find the required information, discover novel patterns and perform categorization. In particular, hospital databases have a great potential to explore hidden patterns in medical domain datasets due to their voluminous, heterogeneous and distributed nature. These patterns can be used for clinical diagnosis and resource management, among others. Given the recent pandemic situation, knowledge discovery for efficient decision making becomes imperative. This paper presents the use of combined k-means clustering techniques, k-prototypes and SOM self-organizing maps of the unsupervised competitive paradigm, on the public database with COVID-19 cases at the national level, from the Ministry of Health of Argentina. The results of k-prototypes allowed obtaining an overview of the distribution of samples, while the SOM, with high quality model evaluation measures, enabled a more complete, in-depth and visual analysis. In addition, software is presented to facilitate the study of results by experts.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
KDD
Data Mining
K-Prototypes
SOM
COVID-19
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/165803

id SEDICI_eed05023e2f120f1f8ef04b3c4979bac
oai_identifier_str oai:sedici.unlp.edu.ar:10915/165803
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19Knowledge discovery for health management: application to COVID-19 data.Ferraris, IgnacioGabbanelli, LuciaMileta, Srecko EstanislaoSeijas, Leticia MaríaCiencias InformáticasKDDData MiningK-PrototypesSOMCOVID-19Actualmente las organizaciones disponen de conjuntos de datos cada vez más grandes y complejos. Para encontrar la información requerida, descubrir patrones novedosos y realizar una categorización se utilizan técnicas de descubrimiento de conocimiento en bases de datos (KDD) y data mining. En particular, las bases de datos hospitalarias tienen un gran potencial para explorar patrones ocultos en conjuntos de datos de dominio médico debido a su naturaleza voluminosa, heterogénea y distribuida. Estos patrones se pueden utilizar para el diagnóstico clínico y gestión de recursos, entre otros. Dada la situación de pandemia que se ha vivido recientemente, el descubrimiento de conocimiento para la eficiencia en la toma de decisiones se vuelve imprescindible. Este trabajo presenta la utilización de técnicas combinadas de clustering k-means, k-prototypes y mapas auto-organizados SOM del paradigma competitivo no supervisado, sobre la base de datos pública con casos COVID-19 a nivel nacional, del Ministerio de Salud de Argentina. Los resultados de k-prototypes permitieron obtener un panorama general de la distribución de las muestras, mientras que los SOM, con medidas de evaluación del modelo de gran calidad, posibilitaron un análisis más completo, profundo y visual. Adicionalmente, se presenta un software para facilitar a los expertos el estudio de resultados.Organizations today have increasingly large and complex data sets. Knowledge discovery in databases (KDD) and data mining techniques are used to find the required information, discover novel patterns and perform categorization. In particular, hospital databases have a great potential to explore hidden patterns in medical domain datasets due to their voluminous, heterogeneous and distributed nature. These patterns can be used for clinical diagnosis and resource management, among others. Given the recent pandemic situation, knowledge discovery for efficient decision making becomes imperative. This paper presents the use of combined k-means clustering techniques, k-prototypes and SOM self-organizing maps of the unsupervised competitive paradigm, on the public database with COVID-19 cases at the national level, from the Ministry of Health of Argentina. The results of k-prototypes allowed obtaining an overview of the distribution of samples, while the SOM, with high quality model evaluation measures, enabled a more complete, in-depth and visual analysis. In addition, software is presented to facilitate the study of results by experts.Sociedad Argentina de Informática e Investigación Operativa2023-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf149-162http://sedici.unlp.edu.ar/handle/10915/165803spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/702info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:15:49Zoai:sedici.unlp.edu.ar:10915/165803Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:15:49.99SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
Knowledge discovery for health management: application to COVID-19 data.
title Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
spellingShingle Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
Ferraris, Ignacio
Ciencias Informáticas
KDD
Data Mining
K-Prototypes
SOM
COVID-19
title_short Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
title_full Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
title_fullStr Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
title_full_unstemmed Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
title_sort Descubrimiento de conocimiento para la gestión en salud: aplicación a datos COVID-19
dc.creator.none.fl_str_mv Ferraris, Ignacio
Gabbanelli, Lucia
Mileta, Srecko Estanislao
Seijas, Leticia María
author Ferraris, Ignacio
author_facet Ferraris, Ignacio
Gabbanelli, Lucia
Mileta, Srecko Estanislao
Seijas, Leticia María
author_role author
author2 Gabbanelli, Lucia
Mileta, Srecko Estanislao
Seijas, Leticia María
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
KDD
Data Mining
K-Prototypes
SOM
COVID-19
topic Ciencias Informáticas
KDD
Data Mining
K-Prototypes
SOM
COVID-19
dc.description.none.fl_txt_mv Actualmente las organizaciones disponen de conjuntos de datos cada vez más grandes y complejos. Para encontrar la información requerida, descubrir patrones novedosos y realizar una categorización se utilizan técnicas de descubrimiento de conocimiento en bases de datos (KDD) y data mining. En particular, las bases de datos hospitalarias tienen un gran potencial para explorar patrones ocultos en conjuntos de datos de dominio médico debido a su naturaleza voluminosa, heterogénea y distribuida. Estos patrones se pueden utilizar para el diagnóstico clínico y gestión de recursos, entre otros. Dada la situación de pandemia que se ha vivido recientemente, el descubrimiento de conocimiento para la eficiencia en la toma de decisiones se vuelve imprescindible. Este trabajo presenta la utilización de técnicas combinadas de clustering k-means, k-prototypes y mapas auto-organizados SOM del paradigma competitivo no supervisado, sobre la base de datos pública con casos COVID-19 a nivel nacional, del Ministerio de Salud de Argentina. Los resultados de k-prototypes permitieron obtener un panorama general de la distribución de las muestras, mientras que los SOM, con medidas de evaluación del modelo de gran calidad, posibilitaron un análisis más completo, profundo y visual. Adicionalmente, se presenta un software para facilitar a los expertos el estudio de resultados.
Organizations today have increasingly large and complex data sets. Knowledge discovery in databases (KDD) and data mining techniques are used to find the required information, discover novel patterns and perform categorization. In particular, hospital databases have a great potential to explore hidden patterns in medical domain datasets due to their voluminous, heterogeneous and distributed nature. These patterns can be used for clinical diagnosis and resource management, among others. Given the recent pandemic situation, knowledge discovery for efficient decision making becomes imperative. This paper presents the use of combined k-means clustering techniques, k-prototypes and SOM self-organizing maps of the unsupervised competitive paradigm, on the public database with COVID-19 cases at the national level, from the Ministry of Health of Argentina. The results of k-prototypes allowed obtaining an overview of the distribution of samples, while the SOM, with high quality model evaluation measures, enabled a more complete, in-depth and visual analysis. In addition, software is presented to facilitate the study of results by experts.
Sociedad Argentina de Informática e Investigación Operativa
description Actualmente las organizaciones disponen de conjuntos de datos cada vez más grandes y complejos. Para encontrar la información requerida, descubrir patrones novedosos y realizar una categorización se utilizan técnicas de descubrimiento de conocimiento en bases de datos (KDD) y data mining. En particular, las bases de datos hospitalarias tienen un gran potencial para explorar patrones ocultos en conjuntos de datos de dominio médico debido a su naturaleza voluminosa, heterogénea y distribuida. Estos patrones se pueden utilizar para el diagnóstico clínico y gestión de recursos, entre otros. Dada la situación de pandemia que se ha vivido recientemente, el descubrimiento de conocimiento para la eficiencia en la toma de decisiones se vuelve imprescindible. Este trabajo presenta la utilización de técnicas combinadas de clustering k-means, k-prototypes y mapas auto-organizados SOM del paradigma competitivo no supervisado, sobre la base de datos pública con casos COVID-19 a nivel nacional, del Ministerio de Salud de Argentina. Los resultados de k-prototypes permitieron obtener un panorama general de la distribución de las muestras, mientras que los SOM, con medidas de evaluación del modelo de gran calidad, posibilitaron un análisis más completo, profundo y visual. Adicionalmente, se presenta un software para facilitar a los expertos el estudio de resultados.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/165803
url http://sedici.unlp.edu.ar/handle/10915/165803
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/702
info:eu-repo/semantics/altIdentifier/issn/2451-7496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
149-162
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260662506487808
score 13.13397