Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts
- Autores
- Xamena, Eduardo; Orozco, Carlos Ismael; Carrasco Cabrera, Gastón
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Handwritten Text Recognition is an extensively studied research topic.We implement a widely known binarization method in order to preprocess handwritten text images efficiently and accurately, acquiring adequate binary black-white images for later recognition processes. Afterwards, the characters present in the documents are used to train and evaluate deep-learning mechanisms for the recognition task. Our framework provides good source images for the recognition phase in terms of noise removal and processing of low contrast images. Besides, the process of character recognition is also improved by means of deep-learning techniques.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Handwritten text recognition
Convolutional Neural Networks
Binarization
Document images - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/89180
Ver los metadatos del registro completo
id |
SEDICI_ecedff1f295525e475d90ba3176cb553 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/89180 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish ManuscriptsXamena, EduardoOrozco, Carlos IsmaelCarrasco Cabrera, GastónCiencias InformáticasHandwritten text recognitionConvolutional Neural NetworksBinarizationDocument imagesHandwritten Text Recognition is an extensively studied research topic.We implement a widely known binarization method in order to preprocess handwritten text images efficiently and accurately, acquiring adequate binary black-white images for later recognition processes. Afterwards, the characters present in the documents are used to train and evaluate deep-learning mechanisms for the recognition task. Our framework provides good source images for the recognition phase in terms of noise removal and processing of low contrast images. Besides, the process of character recognition is also improved by means of deep-learning techniques.Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf28-34http://sedici.unlp.edu.ar/handle/10915/89180enginfo:eu-repo/semantics/altIdentifier/issn/2683-8990info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:18Zoai:sedici.unlp.edu.ar:10915/89180Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:19.041SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
title |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
spellingShingle |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts Xamena, Eduardo Ciencias Informáticas Handwritten text recognition Convolutional Neural Networks Binarization Document images |
title_short |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
title_full |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
title_fullStr |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
title_full_unstemmed |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
title_sort |
Towards a Handwritten Text Interpretation Framework for Ancient Spanish Manuscripts |
dc.creator.none.fl_str_mv |
Xamena, Eduardo Orozco, Carlos Ismael Carrasco Cabrera, Gastón |
author |
Xamena, Eduardo |
author_facet |
Xamena, Eduardo Orozco, Carlos Ismael Carrasco Cabrera, Gastón |
author_role |
author |
author2 |
Orozco, Carlos Ismael Carrasco Cabrera, Gastón |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Handwritten text recognition Convolutional Neural Networks Binarization Document images |
topic |
Ciencias Informáticas Handwritten text recognition Convolutional Neural Networks Binarization Document images |
dc.description.none.fl_txt_mv |
Handwritten Text Recognition is an extensively studied research topic.We implement a widely known binarization method in order to preprocess handwritten text images efficiently and accurately, acquiring adequate binary black-white images for later recognition processes. Afterwards, the characters present in the documents are used to train and evaluate deep-learning mechanisms for the recognition task. Our framework provides good source images for the recognition phase in terms of noise removal and processing of low contrast images. Besides, the process of character recognition is also improved by means of deep-learning techniques. Sociedad Argentina de Informática e Investigación Operativa |
description |
Handwritten Text Recognition is an extensively studied research topic.We implement a widely known binarization method in order to preprocess handwritten text images efficiently and accurately, acquiring adequate binary black-white images for later recognition processes. Afterwards, the characters present in the documents are used to train and evaluate deep-learning mechanisms for the recognition task. Our framework provides good source images for the recognition phase in terms of noise removal and processing of low contrast images. Besides, the process of character recognition is also improved by means of deep-learning techniques. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/89180 |
url |
http://sedici.unlp.edu.ar/handle/10915/89180 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2683-8990 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 28-34 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616056774066176 |
score |
13.070432 |