Extracción de entidades en sentencias judiciales usando LLaMA-2

Autores
Vargas, Francisco; González Coene, Alejandro; Escalante, Gastón; Lobón, Exequiel; Pulido, Manuel
Año de publicación
2024
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La extracción de información de accidentes viales disponible en sentencias judiciales es de relevancia para la cuantificación de costos de las aseguradoras. La extracción de entidades tales como porcentajes de incapacidad física y/o psicológica y montos involucrados es un proceso difícil aun para expertos por las sutiles argumentaciones en las sentencias. Se propone un procedimiento que se divide en dos pasos, la segmentación de la sentencia e identificación del segmento relevante y luego la extracción de las entidades. Se comparan dos metodologías, un método clásico basado en expresiones regulares. La segunda metodología está basada en la división del documento en bloques de n-tokens para luego vectorizarlos con modelos multilenguajes para búsquedas semánticas (text-embedding-ada-002/MiniLM-L12-v2 ). Posteriormente se aplican LLMs (LLaMA-2 7b, 70b y GPT4) con prompting al bloque relevante para la extracción. En el caso de LLaMA-2 se realiza un sintonizado fino (finetuning) con LoRA. LLaMA-2 7b aun con temperatura nula presenta un significativo número de alucinaciones en las extracciones que disminuye sustancialmente con el sintonizado. El rendimiento de la metodología basada en el vectorizado de los segmentos y el posterior uso de los LLMs supera ampliamente al método clásico. La exactitud del método clásico es 39,5 %, la de LLaMA-2 70b base 61,7 % y con sintonizado 79,4 %, mientras que para GPT-4 Turbo es 86,1 %.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Reconocimiento de entidades nombradas
Grandes modelos de lenguaje
Textos legales
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/177173

id SEDICI_eca92b5037fedf41748a952ba8300e40
oai_identifier_str oai:sedici.unlp.edu.ar:10915/177173
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Extracción de entidades en sentencias judiciales usando LLaMA-2Vargas, FranciscoGonzález Coene, AlejandroEscalante, GastónLobón, ExequielPulido, ManuelCiencias InformáticasReconocimiento de entidades nombradasGrandes modelos de lenguajeTextos legalesLa extracción de información de accidentes viales disponible en sentencias judiciales es de relevancia para la cuantificación de costos de las aseguradoras. La extracción de entidades tales como porcentajes de incapacidad física y/o psicológica y montos involucrados es un proceso difícil aun para expertos por las sutiles argumentaciones en las sentencias. Se propone un procedimiento que se divide en dos pasos, la segmentación de la sentencia e identificación del segmento relevante y luego la extracción de las entidades. Se comparan dos metodologías, un método clásico basado en expresiones regulares. La segunda metodología está basada en la división del documento en bloques de n-tokens para luego vectorizarlos con modelos multilenguajes para búsquedas semánticas (text-embedding-ada-002/MiniLM-L12-v2 ). Posteriormente se aplican LLMs (LLaMA-2 7b, 70b y GPT4) con prompting al bloque relevante para la extracción. En el caso de LLaMA-2 se realiza un sintonizado fino (finetuning) con LoRA. LLaMA-2 7b aun con temperatura nula presenta un significativo número de alucinaciones en las extracciones que disminuye sustancialmente con el sintonizado. El rendimiento de la metodología basada en el vectorizado de los segmentos y el posterior uso de los LLMs supera ampliamente al método clásico. La exactitud del método clásico es 39,5 %, la de LLaMA-2 70b base 61,7 % y con sintonizado 79,4 %, mientras que para GPT-4 Turbo es 86,1 %.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf42-55http://sedici.unlp.edu.ar/handle/10915/177173spainfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17923info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:39:37Zoai:sedici.unlp.edu.ar:10915/177173Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:39:37.398SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Extracción de entidades en sentencias judiciales usando LLaMA-2
title Extracción de entidades en sentencias judiciales usando LLaMA-2
spellingShingle Extracción de entidades en sentencias judiciales usando LLaMA-2
Vargas, Francisco
Ciencias Informáticas
Reconocimiento de entidades nombradas
Grandes modelos de lenguaje
Textos legales
title_short Extracción de entidades en sentencias judiciales usando LLaMA-2
title_full Extracción de entidades en sentencias judiciales usando LLaMA-2
title_fullStr Extracción de entidades en sentencias judiciales usando LLaMA-2
title_full_unstemmed Extracción de entidades en sentencias judiciales usando LLaMA-2
title_sort Extracción de entidades en sentencias judiciales usando LLaMA-2
dc.creator.none.fl_str_mv Vargas, Francisco
González Coene, Alejandro
Escalante, Gastón
Lobón, Exequiel
Pulido, Manuel
author Vargas, Francisco
author_facet Vargas, Francisco
González Coene, Alejandro
Escalante, Gastón
Lobón, Exequiel
Pulido, Manuel
author_role author
author2 González Coene, Alejandro
Escalante, Gastón
Lobón, Exequiel
Pulido, Manuel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Reconocimiento de entidades nombradas
Grandes modelos de lenguaje
Textos legales
topic Ciencias Informáticas
Reconocimiento de entidades nombradas
Grandes modelos de lenguaje
Textos legales
dc.description.none.fl_txt_mv La extracción de información de accidentes viales disponible en sentencias judiciales es de relevancia para la cuantificación de costos de las aseguradoras. La extracción de entidades tales como porcentajes de incapacidad física y/o psicológica y montos involucrados es un proceso difícil aun para expertos por las sutiles argumentaciones en las sentencias. Se propone un procedimiento que se divide en dos pasos, la segmentación de la sentencia e identificación del segmento relevante y luego la extracción de las entidades. Se comparan dos metodologías, un método clásico basado en expresiones regulares. La segunda metodología está basada en la división del documento en bloques de n-tokens para luego vectorizarlos con modelos multilenguajes para búsquedas semánticas (text-embedding-ada-002/MiniLM-L12-v2 ). Posteriormente se aplican LLMs (LLaMA-2 7b, 70b y GPT4) con prompting al bloque relevante para la extracción. En el caso de LLaMA-2 se realiza un sintonizado fino (finetuning) con LoRA. LLaMA-2 7b aun con temperatura nula presenta un significativo número de alucinaciones en las extracciones que disminuye sustancialmente con el sintonizado. El rendimiento de la metodología basada en el vectorizado de los segmentos y el posterior uso de los LLMs supera ampliamente al método clásico. La exactitud del método clásico es 39,5 %, la de LLaMA-2 70b base 61,7 % y con sintonizado 79,4 %, mientras que para GPT-4 Turbo es 86,1 %.
Sociedad Argentina de Informática e Investigación Operativa
description La extracción de información de accidentes viales disponible en sentencias judiciales es de relevancia para la cuantificación de costos de las aseguradoras. La extracción de entidades tales como porcentajes de incapacidad física y/o psicológica y montos involucrados es un proceso difícil aun para expertos por las sutiles argumentaciones en las sentencias. Se propone un procedimiento que se divide en dos pasos, la segmentación de la sentencia e identificación del segmento relevante y luego la extracción de las entidades. Se comparan dos metodologías, un método clásico basado en expresiones regulares. La segunda metodología está basada en la división del documento en bloques de n-tokens para luego vectorizarlos con modelos multilenguajes para búsquedas semánticas (text-embedding-ada-002/MiniLM-L12-v2 ). Posteriormente se aplican LLMs (LLaMA-2 7b, 70b y GPT4) con prompting al bloque relevante para la extracción. En el caso de LLaMA-2 se realiza un sintonizado fino (finetuning) con LoRA. LLaMA-2 7b aun con temperatura nula presenta un significativo número de alucinaciones en las extracciones que disminuye sustancialmente con el sintonizado. El rendimiento de la metodología basada en el vectorizado de los segmentos y el posterior uso de los LLMs supera ampliamente al método clásico. La exactitud del método clásico es 39,5 %, la de LLaMA-2 70b base 61,7 % y con sintonizado 79,4 %, mientras que para GPT-4 Turbo es 86,1 %.
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/177173
url http://sedici.unlp.edu.ar/handle/10915/177173
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17923
info:eu-repo/semantics/altIdentifier/issn/2451-7496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
42-55
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064410858094592
score 13.22299