Combining argumentation and clustering techniques in pattern classification problems

Autores
Gómez, Sergio Alejandro; Chesñevar, Carlos Iván
Año de publicación
2003
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Intelligent agents
ARTIFICIAL INTELLIGENCE
Neural nets
Clustering
Machine Learning
Defeasible Argumentation
Neural networks
Fuzzy Adaptive Resonance Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22714

id SEDICI_da9182504ee5da500a752998662db264
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22714
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Combining argumentation and clustering techniques in pattern classification problemsGómez, Sergio AlejandroChesñevar, Carlos IvánCiencias InformáticasIntelligent agentsARTIFICIAL INTELLIGENCENeural netsClusteringMachine LearningDefeasible ArgumentationNeural networksFuzzy Adaptive Resonance TheoryClustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf601-612http://sedici.unlp.edu.ar/handle/10915/22714enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:58Zoai:sedici.unlp.edu.ar:10915/22714Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:58.635SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Combining argumentation and clustering techniques in pattern classification problems
title Combining argumentation and clustering techniques in pattern classification problems
spellingShingle Combining argumentation and clustering techniques in pattern classification problems
Gómez, Sergio Alejandro
Ciencias Informáticas
Intelligent agents
ARTIFICIAL INTELLIGENCE
Neural nets
Clustering
Machine Learning
Defeasible Argumentation
Neural networks
Fuzzy Adaptive Resonance Theory
title_short Combining argumentation and clustering techniques in pattern classification problems
title_full Combining argumentation and clustering techniques in pattern classification problems
title_fullStr Combining argumentation and clustering techniques in pattern classification problems
title_full_unstemmed Combining argumentation and clustering techniques in pattern classification problems
title_sort Combining argumentation and clustering techniques in pattern classification problems
dc.creator.none.fl_str_mv Gómez, Sergio Alejandro
Chesñevar, Carlos Iván
author Gómez, Sergio Alejandro
author_facet Gómez, Sergio Alejandro
Chesñevar, Carlos Iván
author_role author
author2 Chesñevar, Carlos Iván
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Intelligent agents
ARTIFICIAL INTELLIGENCE
Neural nets
Clustering
Machine Learning
Defeasible Argumentation
Neural networks
Fuzzy Adaptive Resonance Theory
topic Ciencias Informáticas
Intelligent agents
ARTIFICIAL INTELLIGENCE
Neural nets
Clustering
Machine Learning
Defeasible Argumentation
Neural networks
Fuzzy Adaptive Resonance Theory
dc.description.none.fl_txt_mv Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.
publishDate 2003
dc.date.none.fl_str_mv 2003-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22714
url http://sedici.unlp.edu.ar/handle/10915/22714
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
601-612
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260117978873856
score 13.13397