Combining argumentation and clustering techniques in pattern classification problems
- Autores
- Gómez, Sergio Alejandro; Chesñevar, Carlos Iván
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Intelligent agents
ARTIFICIAL INTELLIGENCE
Neural nets
Clustering
Machine Learning
Defeasible Argumentation
Neural networks
Fuzzy Adaptive Resonance Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22714
Ver los metadatos del registro completo
id |
SEDICI_da9182504ee5da500a752998662db264 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22714 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Combining argumentation and clustering techniques in pattern classification problemsGómez, Sergio AlejandroChesñevar, Carlos IvánCiencias InformáticasIntelligent agentsARTIFICIAL INTELLIGENCENeural netsClusteringMachine LearningDefeasible ArgumentationNeural networksFuzzy Adaptive Resonance TheoryClustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf601-612http://sedici.unlp.edu.ar/handle/10915/22714enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:58Zoai:sedici.unlp.edu.ar:10915/22714Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:58.635SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Combining argumentation and clustering techniques in pattern classification problems |
title |
Combining argumentation and clustering techniques in pattern classification problems |
spellingShingle |
Combining argumentation and clustering techniques in pattern classification problems Gómez, Sergio Alejandro Ciencias Informáticas Intelligent agents ARTIFICIAL INTELLIGENCE Neural nets Clustering Machine Learning Defeasible Argumentation Neural networks Fuzzy Adaptive Resonance Theory |
title_short |
Combining argumentation and clustering techniques in pattern classification problems |
title_full |
Combining argumentation and clustering techniques in pattern classification problems |
title_fullStr |
Combining argumentation and clustering techniques in pattern classification problems |
title_full_unstemmed |
Combining argumentation and clustering techniques in pattern classification problems |
title_sort |
Combining argumentation and clustering techniques in pattern classification problems |
dc.creator.none.fl_str_mv |
Gómez, Sergio Alejandro Chesñevar, Carlos Iván |
author |
Gómez, Sergio Alejandro |
author_facet |
Gómez, Sergio Alejandro Chesñevar, Carlos Iván |
author_role |
author |
author2 |
Chesñevar, Carlos Iván |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Intelligent agents ARTIFICIAL INTELLIGENCE Neural nets Clustering Machine Learning Defeasible Argumentation Neural networks Fuzzy Adaptive Resonance Theory |
topic |
Ciencias Informáticas Intelligent agents ARTIFICIAL INTELLIGENCE Neural nets Clustering Machine Learning Defeasible Argumentation Neural networks Fuzzy Adaptive Resonance Theory |
dc.description.none.fl_txt_mv |
Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples. Eje: Agentes y Sistemas Inteligentes (ASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22714 |
url |
http://sedici.unlp.edu.ar/handle/10915/22714 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 601-612 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260117978873856 |
score |
13.13397 |