Estimating parametric line-source models with electroencephalography
- Autores
- Cao, Nannan; Yetik, Samil; Nehorai, Arye; Muravchik, Carlos Horacio; Haueisen, Jens
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
-
Ingeniería Electrónica
Cramér-Rao bounds
EEG
Extended source modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/127106
Ver los metadatos del registro completo
id |
SEDICI_eb476b2c325f7cf3761cc5bdcf2bf913 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/127106 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Estimating parametric line-source models with electroencephalographyCao, NannanYetik, SamilNehorai, AryeMuravchik, Carlos HoracioHaueisen, JensIngeniería ElectrónicaCramér-Rao boundsEEGExtended source modelingWe develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole modelInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2156-2165http://sedici.unlp.edu.ar/handle/10915/127106enginfo:eu-repo/semantics/altIdentifier/issn/0018-9294info:eu-repo/semantics/altIdentifier/issn/1558-2531info:eu-repo/semantics/altIdentifier/pmid/17073320info:eu-repo/semantics/altIdentifier/doi/10.1109/tbme.2006.880885info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:22:31Zoai:sedici.unlp.edu.ar:10915/127106Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:22:31.723SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Estimating parametric line-source models with electroencephalography |
title |
Estimating parametric line-source models with electroencephalography |
spellingShingle |
Estimating parametric line-source models with electroencephalography Cao, Nannan Ingeniería Electrónica Cramér-Rao bounds EEG Extended source modeling |
title_short |
Estimating parametric line-source models with electroencephalography |
title_full |
Estimating parametric line-source models with electroencephalography |
title_fullStr |
Estimating parametric line-source models with electroencephalography |
title_full_unstemmed |
Estimating parametric line-source models with electroencephalography |
title_sort |
Estimating parametric line-source models with electroencephalography |
dc.creator.none.fl_str_mv |
Cao, Nannan Yetik, Samil Nehorai, Arye Muravchik, Carlos Horacio Haueisen, Jens |
author |
Cao, Nannan |
author_facet |
Cao, Nannan Yetik, Samil Nehorai, Arye Muravchik, Carlos Horacio Haueisen, Jens |
author_role |
author |
author2 |
Yetik, Samil Nehorai, Arye Muravchik, Carlos Horacio Haueisen, Jens |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ingeniería Electrónica Cramér-Rao bounds EEG Extended source modeling |
topic |
Ingeniería Electrónica Cramér-Rao bounds EEG Extended source modeling |
dc.description.none.fl_txt_mv |
We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
description |
We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/127106 |
url |
http://sedici.unlp.edu.ar/handle/10915/127106 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0018-9294 info:eu-repo/semantics/altIdentifier/issn/1558-2531 info:eu-repo/semantics/altIdentifier/pmid/17073320 info:eu-repo/semantics/altIdentifier/doi/10.1109/tbme.2006.880885 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 2156-2165 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064281505759232 |
score |
13.22299 |