Estimating parametric line-source models with electroencephalography

Autores
Cao, Nannan; Yetik, Samil; Nehorai, Arye; Muravchik, Carlos Horacio; Haueisen, Jens
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales
Materia
Ingeniería Electrónica
Cramér-Rao bounds
EEG
Extended source modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/127106

id SEDICI_eb476b2c325f7cf3761cc5bdcf2bf913
oai_identifier_str oai:sedici.unlp.edu.ar:10915/127106
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Estimating parametric line-source models with electroencephalographyCao, NannanYetik, SamilNehorai, AryeMuravchik, Carlos HoracioHaueisen, JensIngeniería ElectrónicaCramér-Rao boundsEEGExtended source modelingWe develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole modelInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2156-2165http://sedici.unlp.edu.ar/handle/10915/127106enginfo:eu-repo/semantics/altIdentifier/issn/0018-9294info:eu-repo/semantics/altIdentifier/issn/1558-2531info:eu-repo/semantics/altIdentifier/pmid/17073320info:eu-repo/semantics/altIdentifier/doi/10.1109/tbme.2006.880885info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:22:31Zoai:sedici.unlp.edu.ar:10915/127106Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:22:31.723SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Estimating parametric line-source models with electroencephalography
title Estimating parametric line-source models with electroencephalography
spellingShingle Estimating parametric line-source models with electroencephalography
Cao, Nannan
Ingeniería Electrónica
Cramér-Rao bounds
EEG
Extended source modeling
title_short Estimating parametric line-source models with electroencephalography
title_full Estimating parametric line-source models with electroencephalography
title_fullStr Estimating parametric line-source models with electroencephalography
title_full_unstemmed Estimating parametric line-source models with electroencephalography
title_sort Estimating parametric line-source models with electroencephalography
dc.creator.none.fl_str_mv Cao, Nannan
Yetik, Samil
Nehorai, Arye
Muravchik, Carlos Horacio
Haueisen, Jens
author Cao, Nannan
author_facet Cao, Nannan
Yetik, Samil
Nehorai, Arye
Muravchik, Carlos Horacio
Haueisen, Jens
author_role author
author2 Yetik, Samil
Nehorai, Arye
Muravchik, Carlos Horacio
Haueisen, Jens
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ingeniería Electrónica
Cramér-Rao bounds
EEG
Extended source modeling
topic Ingeniería Electrónica
Cramér-Rao bounds
EEG
Extended source modeling
dc.description.none.fl_txt_mv We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales
description We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Crameacuter-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/127106
url http://sedici.unlp.edu.ar/handle/10915/127106
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0018-9294
info:eu-repo/semantics/altIdentifier/issn/1558-2531
info:eu-repo/semantics/altIdentifier/pmid/17073320
info:eu-repo/semantics/altIdentifier/doi/10.1109/tbme.2006.880885
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2156-2165
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064281505759232
score 13.22299