Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables

Autores
Cajiao Checchin, Valentina Chiara
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El Ti y sus aleaciones son extensamente utilizados en el campo de la odontología y la ortopedia debido a su alta resistencia a la corrosión, adecuadas propiedades mecánicas y buena biocompatibilidad. Sin embargo, la osteointegración de estos implantes puede fracasar debido a la colonización bacteriana sobre su superficie. Las infecciones bacterianas en dispositivos médicos son un problema en expansión debido a la prevalencia creciente de resistencia de las bacterias a las terapias antimicrobianas convencionales. Las propiedades superficiales del biomaterial ejercen gran impacto sobre la adhesión de microorganismos, de esto surge que, entre los desafíos actuales, se encuentre el desarrollo de superficies que eviten dicha colonización. El objetivo del presente plan es prevenir la formación de biofilms bacterianos en implantes de titanio mediante la generación superficial de nanotubos de titanio (TiO2-NTs) y derivados decorados con nanopartículas metálicas de Ag y/o Au (M@TiO2-NTs) con actividad fotocatalítica. Con ese propósito se sintetizarán TiO2-NTs sobre la superficie de Ti mediante procesos de anodización electroquímica. Se evaluará la influencia del electrolito, potencial, tiempo y temperatura de tratamiento sobre el grado de ordenamiento, diámetro y cristalinidad de los NTs obtenidos, que serán caracterizados mediante distintas técnicas tales como TEM, SEM, XRD, XPS, EDS, CAM. Posteriormente los sustratos seleccionados se decorarán con nanopartículas de Ag y/o Au (M@TiO2-NTs) y se evaluará el efecto de las propiedades de los sustratos sin/con modificaciones superficiales sobre la viabilidad de Staphylococcus aureus (patógeno de gran relevancia clínica por su resistencia a las terapias antimicrobianas) y sobre la biocompatibilidad en modelos celulares eucariotas apropiados (por ej. MC3T3-E1). Seguidamente se evaluará la actividad fotocatalítica de los recubrimientos M@TiO2-NTs utilizando como modelo la degradación de colorantes como el azul de metileno o naranja de metilo a distintas longitudes de onda de irradiación. Se investigará finalmente la capacidad anti-biofilm y antibacteriana de M@TiO2-NTs irradiadas a diferentes longitudes de onda en el UV-Vis en cultivos de células procariotas y eucariotas, ya que en las superficies generaran especies reactivas de oxígeno (ROS) que pueden interaccionar con la pared celular, interrumpir la duplicación de las células y/o conducir a la muerte bacteriana. Sobre dichos cultivos se evaluará la morfología, viabilidad, adhesión, proliferación, actividad de fosfatasa alcalina y genotoxicidad en los casos que correspondan. Finalmente se estudiará el posible efecto sinérgico de la utilización de M@TiO2-NTs e irradiación junto con la terapia antimicrobiana convencional frente a los dos tratamientos efectuados en forma independiente para seleccionar el tratamiento que brinde la menor adhesión bacteriana/mayor acción antimicrobiana y la mejor biocompatibilidad y biofuncionalidad al implante.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Materiales implantables
Superficies antimicrobianas
Nanotubos de Tio2
Fotocatálisis
Implant materials
Antimicrobial surfaces
Tio2 nanotubes
Photocatalysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/114185

id SEDICI_eb33869c137e4aa44c40f1588e562fca
oai_identifier_str oai:sedici.unlp.edu.ar:10915/114185
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantablesNanostructures based on titanium oxide nanotubes and metallic nanoparticles for the prevention of the formation of bacterial biofilms on implantable materialsCajiao Checchin, Valentina ChiaraCiencias ExactasMateriales implantablesSuperficies antimicrobianasNanotubos de Tio2FotocatálisisImplant materialsAntimicrobial surfacesTio2 nanotubesPhotocatalysisEl Ti y sus aleaciones son extensamente utilizados en el campo de la odontología y la ortopedia debido a su alta resistencia a la corrosión, adecuadas propiedades mecánicas y buena biocompatibilidad. Sin embargo, la osteointegración de estos implantes puede fracasar debido a la colonización bacteriana sobre su superficie. Las infecciones bacterianas en dispositivos médicos son un problema en expansión debido a la prevalencia creciente de resistencia de las bacterias a las terapias antimicrobianas convencionales. Las propiedades superficiales del biomaterial ejercen gran impacto sobre la adhesión de microorganismos, de esto surge que, entre los desafíos actuales, se encuentre el desarrollo de superficies que eviten dicha colonización. El objetivo del presente plan es prevenir la formación de biofilms bacterianos en implantes de titanio mediante la generación superficial de nanotubos de titanio (TiO2-NTs) y derivados decorados con nanopartículas metálicas de Ag y/o Au (M@TiO2-NTs) con actividad fotocatalítica. Con ese propósito se sintetizarán TiO2-NTs sobre la superficie de Ti mediante procesos de anodización electroquímica. Se evaluará la influencia del electrolito, potencial, tiempo y temperatura de tratamiento sobre el grado de ordenamiento, diámetro y cristalinidad de los NTs obtenidos, que serán caracterizados mediante distintas técnicas tales como TEM, SEM, XRD, XPS, EDS, CAM. Posteriormente los sustratos seleccionados se decorarán con nanopartículas de Ag y/o Au (M@TiO2-NTs) y se evaluará el efecto de las propiedades de los sustratos sin/con modificaciones superficiales sobre la viabilidad de Staphylococcus aureus (patógeno de gran relevancia clínica por su resistencia a las terapias antimicrobianas) y sobre la biocompatibilidad en modelos celulares eucariotas apropiados (por ej. MC3T3-E1). Seguidamente se evaluará la actividad fotocatalítica de los recubrimientos M@TiO2-NTs utilizando como modelo la degradación de colorantes como el azul de metileno o naranja de metilo a distintas longitudes de onda de irradiación. Se investigará finalmente la capacidad anti-biofilm y antibacteriana de M@TiO2-NTs irradiadas a diferentes longitudes de onda en el UV-Vis en cultivos de células procariotas y eucariotas, ya que en las superficies generaran especies reactivas de oxígeno (ROS) que pueden interaccionar con la pared celular, interrumpir la duplicación de las células y/o conducir a la muerte bacteriana. Sobre dichos cultivos se evaluará la morfología, viabilidad, adhesión, proliferación, actividad de fosfatasa alcalina y genotoxicidad en los casos que correspondan. Finalmente se estudiará el posible efecto sinérgico de la utilización de M@TiO2-NTs e irradiación junto con la terapia antimicrobiana convencional frente a los dos tratamientos efectuados en forma independiente para seleccionar el tratamiento que brinde la menor adhesión bacteriana/mayor acción antimicrobiana y la mejor biocompatibilidad y biofuncionalidad al implante.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2020-11-12info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaimage/jpeghttp://sedici.unlp.edu.ar/handle/10915/114185spainfo:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/ebec2020/valentina-chiara-cajiao-checchininfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:07:31Zoai:sedici.unlp.edu.ar:10915/114185Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:07:32.292SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
Nanostructures based on titanium oxide nanotubes and metallic nanoparticles for the prevention of the formation of bacterial biofilms on implantable materials
title Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
spellingShingle Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
Cajiao Checchin, Valentina Chiara
Ciencias Exactas
Materiales implantables
Superficies antimicrobianas
Nanotubos de Tio2
Fotocatálisis
Implant materials
Antimicrobial surfaces
Tio2 nanotubes
Photocatalysis
title_short Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
title_full Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
title_fullStr Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
title_full_unstemmed Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
title_sort Nanoestructuras basadas en nanotubos de óxido de titanio y nanopartículas metálicas para la prevención de la formación de biofilms bacterianos sobre materiales implantables
dc.creator.none.fl_str_mv Cajiao Checchin, Valentina Chiara
author Cajiao Checchin, Valentina Chiara
author_facet Cajiao Checchin, Valentina Chiara
author_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Materiales implantables
Superficies antimicrobianas
Nanotubos de Tio2
Fotocatálisis
Implant materials
Antimicrobial surfaces
Tio2 nanotubes
Photocatalysis
topic Ciencias Exactas
Materiales implantables
Superficies antimicrobianas
Nanotubos de Tio2
Fotocatálisis
Implant materials
Antimicrobial surfaces
Tio2 nanotubes
Photocatalysis
dc.description.none.fl_txt_mv El Ti y sus aleaciones son extensamente utilizados en el campo de la odontología y la ortopedia debido a su alta resistencia a la corrosión, adecuadas propiedades mecánicas y buena biocompatibilidad. Sin embargo, la osteointegración de estos implantes puede fracasar debido a la colonización bacteriana sobre su superficie. Las infecciones bacterianas en dispositivos médicos son un problema en expansión debido a la prevalencia creciente de resistencia de las bacterias a las terapias antimicrobianas convencionales. Las propiedades superficiales del biomaterial ejercen gran impacto sobre la adhesión de microorganismos, de esto surge que, entre los desafíos actuales, se encuentre el desarrollo de superficies que eviten dicha colonización. El objetivo del presente plan es prevenir la formación de biofilms bacterianos en implantes de titanio mediante la generación superficial de nanotubos de titanio (TiO2-NTs) y derivados decorados con nanopartículas metálicas de Ag y/o Au (M@TiO2-NTs) con actividad fotocatalítica. Con ese propósito se sintetizarán TiO2-NTs sobre la superficie de Ti mediante procesos de anodización electroquímica. Se evaluará la influencia del electrolito, potencial, tiempo y temperatura de tratamiento sobre el grado de ordenamiento, diámetro y cristalinidad de los NTs obtenidos, que serán caracterizados mediante distintas técnicas tales como TEM, SEM, XRD, XPS, EDS, CAM. Posteriormente los sustratos seleccionados se decorarán con nanopartículas de Ag y/o Au (M@TiO2-NTs) y se evaluará el efecto de las propiedades de los sustratos sin/con modificaciones superficiales sobre la viabilidad de Staphylococcus aureus (patógeno de gran relevancia clínica por su resistencia a las terapias antimicrobianas) y sobre la biocompatibilidad en modelos celulares eucariotas apropiados (por ej. MC3T3-E1). Seguidamente se evaluará la actividad fotocatalítica de los recubrimientos M@TiO2-NTs utilizando como modelo la degradación de colorantes como el azul de metileno o naranja de metilo a distintas longitudes de onda de irradiación. Se investigará finalmente la capacidad anti-biofilm y antibacteriana de M@TiO2-NTs irradiadas a diferentes longitudes de onda en el UV-Vis en cultivos de células procariotas y eucariotas, ya que en las superficies generaran especies reactivas de oxígeno (ROS) que pueden interaccionar con la pared celular, interrumpir la duplicación de las células y/o conducir a la muerte bacteriana. Sobre dichos cultivos se evaluará la morfología, viabilidad, adhesión, proliferación, actividad de fosfatasa alcalina y genotoxicidad en los casos que correspondan. Finalmente se estudiará el posible efecto sinérgico de la utilización de M@TiO2-NTs e irradiación junto con la terapia antimicrobiana convencional frente a los dos tratamientos efectuados en forma independiente para seleccionar el tratamiento que brinde la menor adhesión bacteriana/mayor acción antimicrobiana y la mejor biocompatibilidad y biofuncionalidad al implante.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description El Ti y sus aleaciones son extensamente utilizados en el campo de la odontología y la ortopedia debido a su alta resistencia a la corrosión, adecuadas propiedades mecánicas y buena biocompatibilidad. Sin embargo, la osteointegración de estos implantes puede fracasar debido a la colonización bacteriana sobre su superficie. Las infecciones bacterianas en dispositivos médicos son un problema en expansión debido a la prevalencia creciente de resistencia de las bacterias a las terapias antimicrobianas convencionales. Las propiedades superficiales del biomaterial ejercen gran impacto sobre la adhesión de microorganismos, de esto surge que, entre los desafíos actuales, se encuentre el desarrollo de superficies que eviten dicha colonización. El objetivo del presente plan es prevenir la formación de biofilms bacterianos en implantes de titanio mediante la generación superficial de nanotubos de titanio (TiO2-NTs) y derivados decorados con nanopartículas metálicas de Ag y/o Au (M@TiO2-NTs) con actividad fotocatalítica. Con ese propósito se sintetizarán TiO2-NTs sobre la superficie de Ti mediante procesos de anodización electroquímica. Se evaluará la influencia del electrolito, potencial, tiempo y temperatura de tratamiento sobre el grado de ordenamiento, diámetro y cristalinidad de los NTs obtenidos, que serán caracterizados mediante distintas técnicas tales como TEM, SEM, XRD, XPS, EDS, CAM. Posteriormente los sustratos seleccionados se decorarán con nanopartículas de Ag y/o Au (M@TiO2-NTs) y se evaluará el efecto de las propiedades de los sustratos sin/con modificaciones superficiales sobre la viabilidad de Staphylococcus aureus (patógeno de gran relevancia clínica por su resistencia a las terapias antimicrobianas) y sobre la biocompatibilidad en modelos celulares eucariotas apropiados (por ej. MC3T3-E1). Seguidamente se evaluará la actividad fotocatalítica de los recubrimientos M@TiO2-NTs utilizando como modelo la degradación de colorantes como el azul de metileno o naranja de metilo a distintas longitudes de onda de irradiación. Se investigará finalmente la capacidad anti-biofilm y antibacteriana de M@TiO2-NTs irradiadas a diferentes longitudes de onda en el UV-Vis en cultivos de células procariotas y eucariotas, ya que en las superficies generaran especies reactivas de oxígeno (ROS) que pueden interaccionar con la pared celular, interrumpir la duplicación de las células y/o conducir a la muerte bacteriana. Sobre dichos cultivos se evaluará la morfología, viabilidad, adhesión, proliferación, actividad de fosfatasa alcalina y genotoxicidad en los casos que correspondan. Finalmente se estudiará el posible efecto sinérgico de la utilización de M@TiO2-NTs e irradiación junto con la terapia antimicrobiana convencional frente a los dos tratamientos efectuados en forma independiente para seleccionar el tratamiento que brinde la menor adhesión bacteriana/mayor acción antimicrobiana y la mejor biocompatibilidad y biofuncionalidad al implante.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-12
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/114185
url http://sedici.unlp.edu.ar/handle/10915/114185
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/ebec2020/valentina-chiara-cajiao-checchin
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv image/jpeg
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783380905000960
score 12.982451