Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe
- Autores
- La Red Martínez, David L.; Karanik, Marcelo J.; Giovannini, Mirtha E.; Scappini, Reinaldo José Ramón
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Durante el cursado de la carrera de Ingeniería en Sistemas de Información en la Facultad Regional Resistencia de la Universidad Tecnológica Nacional (UTN‐FRRe), el alumno se enfrenta con la necesidad de cursar y regularizar ciertas materias que le generan restricciones de correlatividad. Ese es el caso de la cátedra de primer año Algoritmos y Estructuras de Datos, cuya regularización es necesaria para cursar varias asignaturas de segundo y tercer año. Tomando como base los resultados del proyecto “Determinación de perfiles de estudiantes y de rendimiento académico mediante la utilización de minería de datos”, 25/L059 ‐ UTI1719, implementado en la mencionada cátedra (2013‐2015), se está comenzando un nuevo proyecto tiene como objetivo tomar como punto de partida el análisis descriptivo (lo que pasó), y utilizar la analítica avanzada, con el objetivo de explicar el por qué, el qué va a pasar y cómo podemos abordarlo. Para el estudio se utilizarán distintas herramientas de Minería de Datos: clustering, redes neuronales, redes bayesianas, árboles de decisión, regresión y series temporales, etc. Estas herramientas permiten obtener resultados desde distintas perspectivas del problema abordado. De esta manera se podrán detectar situaciones problemáticas potenciales al inicio del cursado y tomar las medidas necesarias para solucionarlas.
Eje: Tecnología Informática Aplicada en Educación
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Minería de Datos
rendimiento académico
modelos predictivos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/53320
Ver los metadatos del registro completo
id |
SEDICI_ea63228f5daa424f132348f25c91e84c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/53320 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRReLa Red Martínez, David L.Karanik, Marcelo J.Giovannini, Mirtha E.Scappini, Reinaldo José RamónCiencias InformáticasMinería de Datosrendimiento académicomodelos predictivosDurante el cursado de la carrera de Ingeniería en Sistemas de Información en la Facultad Regional Resistencia de la Universidad Tecnológica Nacional (UTN‐FRRe), el alumno se enfrenta con la necesidad de cursar y regularizar ciertas materias que le generan restricciones de correlatividad. Ese es el caso de la cátedra de primer año Algoritmos y Estructuras de Datos, cuya regularización es necesaria para cursar varias asignaturas de segundo y tercer año. Tomando como base los resultados del proyecto “Determinación de perfiles de estudiantes y de rendimiento académico mediante la utilización de minería de datos”, 25/L059 ‐ UTI1719, implementado en la mencionada cátedra (2013‐2015), se está comenzando un nuevo proyecto tiene como objetivo tomar como punto de partida el análisis descriptivo (lo que pasó), y utilizar la analítica avanzada, con el objetivo de explicar el por qué, el qué va a pasar y cómo podemos abordarlo. Para el estudio se utilizarán distintas herramientas de Minería de Datos: clustering, redes neuronales, redes bayesianas, árboles de decisión, regresión y series temporales, etc. Estas herramientas permiten obtener resultados desde distintas perspectivas del problema abordado. De esta manera se podrán detectar situaciones problemáticas potenciales al inicio del cursado y tomar las medidas necesarias para solucionarlas.Eje: Tecnología Informática Aplicada en EducaciónRed de Universidades con Carreras en Informática (RedUNCI)2016-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf940-944http://sedici.unlp.edu.ar/handle/10915/53320spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2info:eu-repo/semantics/reference/hdl/10915/52766info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:57:30Zoai:sedici.unlp.edu.ar:10915/53320Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:57:30.785SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
title |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
spellingShingle |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe La Red Martínez, David L. Ciencias Informáticas Minería de Datos rendimiento académico modelos predictivos |
title_short |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
title_full |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
title_fullStr |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
title_full_unstemmed |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
title_sort |
Hacia un modelo predictivo de rendimiento académico utilizando minería de datos en la UTN – FRRe |
dc.creator.none.fl_str_mv |
La Red Martínez, David L. Karanik, Marcelo J. Giovannini, Mirtha E. Scappini, Reinaldo José Ramón |
author |
La Red Martínez, David L. |
author_facet |
La Red Martínez, David L. Karanik, Marcelo J. Giovannini, Mirtha E. Scappini, Reinaldo José Ramón |
author_role |
author |
author2 |
Karanik, Marcelo J. Giovannini, Mirtha E. Scappini, Reinaldo José Ramón |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Minería de Datos rendimiento académico modelos predictivos |
topic |
Ciencias Informáticas Minería de Datos rendimiento académico modelos predictivos |
dc.description.none.fl_txt_mv |
Durante el cursado de la carrera de Ingeniería en Sistemas de Información en la Facultad Regional Resistencia de la Universidad Tecnológica Nacional (UTN‐FRRe), el alumno se enfrenta con la necesidad de cursar y regularizar ciertas materias que le generan restricciones de correlatividad. Ese es el caso de la cátedra de primer año Algoritmos y Estructuras de Datos, cuya regularización es necesaria para cursar varias asignaturas de segundo y tercer año. Tomando como base los resultados del proyecto “Determinación de perfiles de estudiantes y de rendimiento académico mediante la utilización de minería de datos”, 25/L059 ‐ UTI1719, implementado en la mencionada cátedra (2013‐2015), se está comenzando un nuevo proyecto tiene como objetivo tomar como punto de partida el análisis descriptivo (lo que pasó), y utilizar la analítica avanzada, con el objetivo de explicar el por qué, el qué va a pasar y cómo podemos abordarlo. Para el estudio se utilizarán distintas herramientas de Minería de Datos: clustering, redes neuronales, redes bayesianas, árboles de decisión, regresión y series temporales, etc. Estas herramientas permiten obtener resultados desde distintas perspectivas del problema abordado. De esta manera se podrán detectar situaciones problemáticas potenciales al inicio del cursado y tomar las medidas necesarias para solucionarlas. Eje: Tecnología Informática Aplicada en Educación Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Durante el cursado de la carrera de Ingeniería en Sistemas de Información en la Facultad Regional Resistencia de la Universidad Tecnológica Nacional (UTN‐FRRe), el alumno se enfrenta con la necesidad de cursar y regularizar ciertas materias que le generan restricciones de correlatividad. Ese es el caso de la cátedra de primer año Algoritmos y Estructuras de Datos, cuya regularización es necesaria para cursar varias asignaturas de segundo y tercer año. Tomando como base los resultados del proyecto “Determinación de perfiles de estudiantes y de rendimiento académico mediante la utilización de minería de datos”, 25/L059 ‐ UTI1719, implementado en la mencionada cátedra (2013‐2015), se está comenzando un nuevo proyecto tiene como objetivo tomar como punto de partida el análisis descriptivo (lo que pasó), y utilizar la analítica avanzada, con el objetivo de explicar el por qué, el qué va a pasar y cómo podemos abordarlo. Para el estudio se utilizarán distintas herramientas de Minería de Datos: clustering, redes neuronales, redes bayesianas, árboles de decisión, regresión y series temporales, etc. Estas herramientas permiten obtener resultados desde distintas perspectivas del problema abordado. De esta manera se podrán detectar situaciones problemáticas potenciales al inicio del cursado y tomar las medidas necesarias para solucionarlas. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/53320 |
url |
http://sedici.unlp.edu.ar/handle/10915/53320 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2 info:eu-repo/semantics/reference/hdl/10915/52766 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 940-944 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064020986003456 |
score |
13.22299 |