Intestinal epithelial barrier and mucosal immunity
- Autores
- Rumbo, Martín; Schiffrin, Eduardo J.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Intestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Human intestine
innate immunity
epithelium
development - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/138686
Ver los metadatos del registro completo
id |
SEDICI_e9ebcd33e6f70bca0a2181577254dbd5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/138686 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Intestinal epithelial barrier and mucosal immunityRumbo, MartínSchiffrin, Eduardo J.Ciencias ExactasHuman intestineinnate immunityepitheliumdevelopmentIntestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed.Facultad de Ciencias Exactas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1288-1296http://sedici.unlp.edu.ar/handle/10915/138686enginfo:eu-repo/semantics/altIdentifier/issn/1420-682xinfo:eu-repo/semantics/altIdentifier/issn/1420-9071info:eu-repo/semantics/altIdentifier/doi/10.1007/s00018-005-5033-3info:eu-repo/semantics/altIdentifier/pmid/15971104info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:03:58Zoai:sedici.unlp.edu.ar:10915/138686Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:03:58.318SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Intestinal epithelial barrier and mucosal immunity |
title |
Intestinal epithelial barrier and mucosal immunity |
spellingShingle |
Intestinal epithelial barrier and mucosal immunity Rumbo, Martín Ciencias Exactas Human intestine innate immunity epithelium development |
title_short |
Intestinal epithelial barrier and mucosal immunity |
title_full |
Intestinal epithelial barrier and mucosal immunity |
title_fullStr |
Intestinal epithelial barrier and mucosal immunity |
title_full_unstemmed |
Intestinal epithelial barrier and mucosal immunity |
title_sort |
Intestinal epithelial barrier and mucosal immunity |
dc.creator.none.fl_str_mv |
Rumbo, Martín Schiffrin, Eduardo J. |
author |
Rumbo, Martín |
author_facet |
Rumbo, Martín Schiffrin, Eduardo J. |
author_role |
author |
author2 |
Schiffrin, Eduardo J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Human intestine innate immunity epithelium development |
topic |
Ciencias Exactas Human intestine innate immunity epithelium development |
dc.description.none.fl_txt_mv |
Intestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed. Facultad de Ciencias Exactas |
description |
Intestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/138686 |
url |
http://sedici.unlp.edu.ar/handle/10915/138686 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1420-682x info:eu-repo/semantics/altIdentifier/issn/1420-9071 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00018-005-5033-3 info:eu-repo/semantics/altIdentifier/pmid/15971104 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1288-1296 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260537771032576 |
score |
13.13397 |