N-Body simulation using GP-GPU: evaluating host/device memory transference overhead
- Autores
- Martín, Sergio; Tinetti, Fernando Gustavo; Casas, Nicanor; De Luca, Graciela; Giulianelli, Daniel Alberto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- N-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations.
WPDP- XIII Workshop procesamiento distribuido y paralelo
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Simulation
Optimization
N-Body simulation
GPU optimization
data transference overhead - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/31704
Ver los metadatos del registro completo
| id |
SEDICI_e9650f281857ec18e7c6b75d2ce81033 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/31704 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
N-Body simulation using GP-GPU: evaluating host/device memory transference overheadMartín, SergioTinetti, Fernando GustavoCasas, NicanorDe Luca, GracielaGiulianelli, Daniel AlbertoCiencias InformáticasSimulationOptimizationN-Body simulationGPU optimizationdata transference overheadN-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations.WPDP- XIII Workshop procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI)2013-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/31704enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:37:51Zoai:sedici.unlp.edu.ar:10915/31704Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:37:52.17SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| spellingShingle |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead Martín, Sergio Ciencias Informáticas Simulation Optimization N-Body simulation GPU optimization data transference overhead |
| title_short |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_full |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_fullStr |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_full_unstemmed |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_sort |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| dc.creator.none.fl_str_mv |
Martín, Sergio Tinetti, Fernando Gustavo Casas, Nicanor De Luca, Graciela Giulianelli, Daniel Alberto |
| author |
Martín, Sergio |
| author_facet |
Martín, Sergio Tinetti, Fernando Gustavo Casas, Nicanor De Luca, Graciela Giulianelli, Daniel Alberto |
| author_role |
author |
| author2 |
Tinetti, Fernando Gustavo Casas, Nicanor De Luca, Graciela Giulianelli, Daniel Alberto |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Simulation Optimization N-Body simulation GPU optimization data transference overhead |
| topic |
Ciencias Informáticas Simulation Optimization N-Body simulation GPU optimization data transference overhead |
| dc.description.none.fl_txt_mv |
N-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations. WPDP- XIII Workshop procesamiento distribuido y paralelo Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
N-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/31704 |
| url |
http://sedici.unlp.edu.ar/handle/10915/31704 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978398993874944 |
| score |
13.087074 |