N-Body simulation using GP-GPU: evaluating host/device memory transference overhead
- Autores
- Martín, Sergio; Casas, Nicanor; De Luca, Graciela; Giulianelli, Daniel Alberto; Tinetti, Fernando Gustavo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión enviada
- Descripción
- N-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations.
WPDP- XIII Workshop procesamiento distribuido y paralelo - Materia
-
Ciencias de la Información y Bioinformática
N-Body simulation
GPU optimization
data transference overhead
Simulation
Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3356
Ver los metadatos del registro completo
| id |
CICBA_7153fb0c16e21a6aa39d522a586a1f27 |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3356 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
N-Body simulation using GP-GPU: evaluating host/device memory transference overheadMartín, SergioCasas, NicanorDe Luca, GracielaGiulianelli, Daniel AlbertoTinetti, Fernando GustavoCiencias de la Información y BioinformáticaN-Body simulationGPU optimizationdata transference overheadSimulationOptimizationN-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations.WPDP- XIII Workshop procesamiento distribuido y paralelo2013-10-01info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3356enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-11-06T09:35:20Zoai:digital.cic.gba.gob.ar:11746/3356Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-11-06 09:35:21.645CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| spellingShingle |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead Martín, Sergio Ciencias de la Información y Bioinformática N-Body simulation GPU optimization data transference overhead Simulation Optimization |
| title_short |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_full |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_fullStr |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_full_unstemmed |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| title_sort |
N-Body simulation using GP-GPU: evaluating host/device memory transference overhead |
| dc.creator.none.fl_str_mv |
Martín, Sergio Casas, Nicanor De Luca, Graciela Giulianelli, Daniel Alberto Tinetti, Fernando Gustavo |
| author |
Martín, Sergio |
| author_facet |
Martín, Sergio Casas, Nicanor De Luca, Graciela Giulianelli, Daniel Alberto Tinetti, Fernando Gustavo |
| author_role |
author |
| author2 |
Casas, Nicanor De Luca, Graciela Giulianelli, Daniel Alberto Tinetti, Fernando Gustavo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Ciencias de la Información y Bioinformática N-Body simulation GPU optimization data transference overhead Simulation Optimization |
| topic |
Ciencias de la Información y Bioinformática N-Body simulation GPU optimization data transference overhead Simulation Optimization |
| dc.description.none.fl_txt_mv |
N-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations. WPDP- XIII Workshop procesamiento distribuido y paralelo |
| description |
N-Body simulation algorithms are amongst the most commonly used within the field of scientific computing. Especially in computational astrophysics, they are used to simulate gravitational scenarios for solar systems or galactic collisions. Parallel versions of such N-Body algorithms have been extensively designed and optimized for multicore and distributed computing schemes. However, N-Body algorithms are still a novelty in the field of GPGPU computing. Although several N-body algorithms have been proved to harness the potential of a modern GPU processor, there are additional complexities that this architecture presents that could be analyzed for possible optimizations. In this article, we introduce the problem of host to device (GPU) – and vice versa – data transferring overhead and analyze a way to estimate its impact in the performance of simulations. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-10-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
submittedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3356 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/3356 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1848045368514707456 |
| score |
13.087074 |