Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
- Autores
- Matera, Juan Mauricio; Rossignoli, Raúl Dante; Canosa, Norma Beatriz
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.
Instituto de Física La Plata - Materia
-
Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126047
Ver los metadatos del registro completo
id |
SEDICI_e9147674694c992f10422a16b8e04c45 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126047 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximationMatera, Juan MauricioRossignoli, Raúl DanteCanosa, Norma BeatrizFísicaCouplingQuantum entanglementPhysicsRandom phase approximationMean field theoryConcurrenceSpinsInvariant (mathematics)Quantum mechanicsAnisotropyWe discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.Instituto de Física La Plata2008-10-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126047enginfo:eu-repo/semantics/altIdentifier/issn/1050-2947info:eu-repo/semantics/altIdentifier/issn/1094-1622info:eu-repo/semantics/altIdentifier/arxiv/1104.3853info:eu-repo/semantics/altIdentifier/doi/10.1103/physreva.78.042319info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:18Zoai:sedici.unlp.edu.ar:10915/126047Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:19.169SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
spellingShingle |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation Matera, Juan Mauricio Física Coupling Quantum entanglement Physics Random phase approximation Mean field theory Concurrence Spins Invariant (mathematics) Quantum mechanics Anisotropy |
title_short |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_full |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_fullStr |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_full_unstemmed |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
title_sort |
Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation |
dc.creator.none.fl_str_mv |
Matera, Juan Mauricio Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author |
Matera, Juan Mauricio |
author_facet |
Matera, Juan Mauricio Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author_role |
author |
author2 |
Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Coupling Quantum entanglement Physics Random phase approximation Mean field theory Concurrence Spins Invariant (mathematics) Quantum mechanics Anisotropy |
topic |
Física Coupling Quantum entanglement Physics Random phase approximation Mean field theory Concurrence Spins Invariant (mathematics) Quantum mechanics Anisotropy |
dc.description.none.fl_txt_mv |
We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases. Instituto de Física La Plata |
description |
We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126047 |
url |
http://sedici.unlp.edu.ar/handle/10915/126047 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1050-2947 info:eu-repo/semantics/altIdentifier/issn/1094-1622 info:eu-repo/semantics/altIdentifier/arxiv/1104.3853 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreva.78.042319 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616183056171008 |
score |
13.070432 |