Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation

Autores
Matera, Juan Mauricio; Rossignoli, Raúl Dante; Canosa, Norma Beatriz
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.
Instituto de Física La Plata
Materia
Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126047

id SEDICI_e9147674694c992f10422a16b8e04c45
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126047
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximationMatera, Juan MauricioRossignoli, Raúl DanteCanosa, Norma BeatrizFísicaCouplingQuantum entanglementPhysicsRandom phase approximationMean field theoryConcurrenceSpinsInvariant (mathematics)Quantum mechanicsAnisotropyWe discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.Instituto de Física La Plata2008-10-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126047enginfo:eu-repo/semantics/altIdentifier/issn/1050-2947info:eu-repo/semantics/altIdentifier/issn/1094-1622info:eu-repo/semantics/altIdentifier/arxiv/1104.3853info:eu-repo/semantics/altIdentifier/doi/10.1103/physreva.78.042319info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:18Zoai:sedici.unlp.edu.ar:10915/126047Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:19.169SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
spellingShingle Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
Matera, Juan Mauricio
Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
title_short Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_full Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_fullStr Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_full_unstemmed Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
title_sort Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation
dc.creator.none.fl_str_mv Matera, Juan Mauricio
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author Matera, Juan Mauricio
author_facet Matera, Juan Mauricio
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author_role author
author2 Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author2_role author
author
dc.subject.none.fl_str_mv Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
topic Física
Coupling
Quantum entanglement
Physics
Random phase approximation
Mean field theory
Concurrence
Spins
Invariant (mathematics)
Quantum mechanics
Anisotropy
dc.description.none.fl_txt_mv We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.
Instituto de Física La Plata
description We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most twice that of the interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.
publishDate 2008
dc.date.none.fl_str_mv 2008-10-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126047
url http://sedici.unlp.edu.ar/handle/10915/126047
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1050-2947
info:eu-repo/semantics/altIdentifier/issn/1094-1622
info:eu-repo/semantics/altIdentifier/arxiv/1104.3853
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreva.78.042319
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616183056171008
score 13.070432