Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model

Autores
Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of entanglement spectra is a powerful tool to detect or elucidate universal behavior in quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ , i.e., the lowest-laying gap of the entanglement spectrum, at a two-dimensional quantum critical point. We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition and is mappable to free bosons with an additional external constraint. We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a torus and the half-system bipartition, the entanglement gap vanishes as π2/ ln(L), with L the linear system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the transition, although logarithmic corrections prevent a precise verification of the finite-size scaling. Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to a nontrivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively captured by neglecting the structure of the zero-mode eigenvector.
Fil: Wald, Sascha. Max-planck-institut Für Physik Komplexer Systeme; Alemania
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Scuola Internazionale Superiore di Studi Avanzati; Italia
Fil: Alba, Vincenzo. University of Amsterdam; Países Bajos
Materia
ENTANGLEMENT SPECTRUM
QUANTUM ENTANGLEMENT
QUANTUM PHASE TRANSITIONS
QUANTUM STATISTICAL MECHANICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/145397

id CONICETDig_cc4f879b2f92abfa5c5c2e9a210e3abc
oai_identifier_str oai:ri.conicet.gov.ar:11336/145397
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Closure of the entanglement gap at quantum criticality: The case of the quantum spherical modelWald, SaschaArias, Raúl EduardoAlba, VincenzoENTANGLEMENT SPECTRUMQUANTUM ENTANGLEMENTQUANTUM PHASE TRANSITIONSQUANTUM STATISTICAL MECHANICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The study of entanglement spectra is a powerful tool to detect or elucidate universal behavior in quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ , i.e., the lowest-laying gap of the entanglement spectrum, at a two-dimensional quantum critical point. We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition and is mappable to free bosons with an additional external constraint. We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a torus and the half-system bipartition, the entanglement gap vanishes as π2/ ln(L), with L the linear system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the transition, although logarithmic corrections prevent a precise verification of the finite-size scaling. Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to a nontrivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively captured by neglecting the structure of the zero-mode eigenvector.Fil: Wald, Sascha. Max-planck-institut Für Physik Komplexer Systeme; AlemaniaFil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Scuola Internazionale Superiore di Studi Avanzati; ItaliaFil: Alba, Vincenzo. University of Amsterdam; Países BajosAmerican Physical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145397Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model; American Physical Society; Physical Review Research; 2; 043404; 12-2020; 1-192643-15642643-1564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.043404info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.2.043404info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:39Zoai:ri.conicet.gov.ar:11336/145397instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:40.142CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
title Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
spellingShingle Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
Wald, Sascha
ENTANGLEMENT SPECTRUM
QUANTUM ENTANGLEMENT
QUANTUM PHASE TRANSITIONS
QUANTUM STATISTICAL MECHANICS
title_short Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
title_full Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
title_fullStr Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
title_full_unstemmed Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
title_sort Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model
dc.creator.none.fl_str_mv Wald, Sascha
Arias, Raúl Eduardo
Alba, Vincenzo
author Wald, Sascha
author_facet Wald, Sascha
Arias, Raúl Eduardo
Alba, Vincenzo
author_role author
author2 Arias, Raúl Eduardo
Alba, Vincenzo
author2_role author
author
dc.subject.none.fl_str_mv ENTANGLEMENT SPECTRUM
QUANTUM ENTANGLEMENT
QUANTUM PHASE TRANSITIONS
QUANTUM STATISTICAL MECHANICS
topic ENTANGLEMENT SPECTRUM
QUANTUM ENTANGLEMENT
QUANTUM PHASE TRANSITIONS
QUANTUM STATISTICAL MECHANICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of entanglement spectra is a powerful tool to detect or elucidate universal behavior in quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ , i.e., the lowest-laying gap of the entanglement spectrum, at a two-dimensional quantum critical point. We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition and is mappable to free bosons with an additional external constraint. We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a torus and the half-system bipartition, the entanglement gap vanishes as π2/ ln(L), with L the linear system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the transition, although logarithmic corrections prevent a precise verification of the finite-size scaling. Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to a nontrivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively captured by neglecting the structure of the zero-mode eigenvector.
Fil: Wald, Sascha. Max-planck-institut Für Physik Komplexer Systeme; Alemania
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Scuola Internazionale Superiore di Studi Avanzati; Italia
Fil: Alba, Vincenzo. University of Amsterdam; Países Bajos
description The study of entanglement spectra is a powerful tool to detect or elucidate universal behavior in quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ , i.e., the lowest-laying gap of the entanglement spectrum, at a two-dimensional quantum critical point. We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition and is mappable to free bosons with an additional external constraint. We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a torus and the half-system bipartition, the entanglement gap vanishes as π2/ ln(L), with L the linear system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the transition, although logarithmic corrections prevent a precise verification of the finite-size scaling. Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to a nontrivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively captured by neglecting the structure of the zero-mode eigenvector.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/145397
Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model; American Physical Society; Physical Review Research; 2; 043404; 12-2020; 1-19
2643-1564
2643-1564
CONICET Digital
CONICET
url http://hdl.handle.net/11336/145397
identifier_str_mv Wald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model; American Physical Society; Physical Review Research; 2; 043404; 12-2020; 1-19
2643-1564
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.043404
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.2.043404
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269109275852800
score 13.13397