Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts
- Autores
- Romero, María Cristina; Chiaravalli, Juan Carlos; Reinoso, Enso Hugo
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The organic pollutan adsorption/desorption process by microbial degradation had been less studied than metal ones. The sorption assays alone did not predict desorption, due to hysteresis, irreversibility, fixed compounds in different sites, with diverse desorption rates. Most of the studies dealt with bacteria rather than filamentous fungi and yeasts. So, our aims were to isolate yeasts from polluted sediments, to quantify its potential to uptake anthracene (An) and to evaluate the bioavailability by a desorption model. Yeasts were isolated from hydrocarbon-polluted samples, 40-isolates grew in anthracene-plates. Molecular characterization was achieved by sequence analysis of the ITS1-5.8S rRNA-ITS4 and 26S rRNA regions; morphological and physiological determination were also done. Candida parasilopsis , Pichia anomala and Rhodothorula mucilaginosa were the prevalent yeasts. An-degradation was assessed in soil-systems with 0, 50, 100, 150, 200 and 250 I¼g An/l, 3 differentes sorbens types, organic carbon, organic nitrogen, PAHs, sand:silt:clay, pH and cation exchange capacity. Sophorolipids excretion were confirmed by HPLC, UV-detector with active fraction at 9.669 min (RT 9.646 min = sophorolipid-standard). A desorption model with equilibrium, nonequilibrium and nondesorption areas, was applied to explain the experimental data, An-transformation was greater in the organic liquid-phase than in the soil-sorbed ones; the desorption-coefficients and soil components were negatively correlated with the kinetic parameters. The An-release depended on the sophorolipid excretion, soil matrix and particles sizes. Desorption parameters significantly fitted the yeast uptake, with R 2 = 0.97, R 2 = 0.90 and R 2 = 0.97 for C. parasilopsis , P. anomala and R. mucilaginosa, respectively.
Facultad de Ciencias Veterinarias - Materia
-
Veterinaria
Anthracene
bioavailability
biodegradation
Candida parasilopsis
desorption model Pichia anomala
Rhodothorula mucilaginosa
sophorolipid - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/138613
Ver los metadatos del registro completo
| id |
SEDICI_e8f00ab86eecc28f3851111287bb0e29 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/138613 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Sorbed Anthracene Degradation by Sophorolipid Producing YeastsRomero, María CristinaChiaravalli, Juan CarlosReinoso, Enso HugoVeterinariaAnthracenebioavailabilitybiodegradationCandida parasilopsisdesorption model Pichia anomalaRhodothorula mucilaginosasophorolipidThe organic pollutan adsorption/desorption process by microbial degradation had been less studied than metal ones. The sorption assays alone did not predict desorption, due to hysteresis, irreversibility, fixed compounds in different sites, with diverse desorption rates. Most of the studies dealt with bacteria rather than filamentous fungi and yeasts. So, our aims were to isolate yeasts from polluted sediments, to quantify its potential to uptake anthracene (An) and to evaluate the bioavailability by a desorption model. Yeasts were isolated from hydrocarbon-polluted samples, 40-isolates grew in anthracene-plates. Molecular characterization was achieved by sequence analysis of the ITS1-5.8S rRNA-ITS4 and 26S rRNA regions; morphological and physiological determination were also done. Candida parasilopsis , Pichia anomala and Rhodothorula mucilaginosa were the prevalent yeasts. An-degradation was assessed in soil-systems with 0, 50, 100, 150, 200 and 250 I¼g An/l, 3 differentes sorbens types, organic carbon, organic nitrogen, PAHs, sand:silt:clay, pH and cation exchange capacity. Sophorolipids excretion were confirmed by HPLC, UV-detector with active fraction at 9.669 min (RT 9.646 min = sophorolipid-standard). A desorption model with equilibrium, nonequilibrium and nondesorption areas, was applied to explain the experimental data, An-transformation was greater in the organic liquid-phase than in the soil-sorbed ones; the desorption-coefficients and soil components were negatively correlated with the kinetic parameters. The An-release depended on the sophorolipid excretion, soil matrix and particles sizes. Desorption parameters significantly fitted the yeast uptake, with R 2 = 0.97, R 2 = 0.90 and R 2 = 0.97 for C. parasilopsis , P. anomala and R. mucilaginosa, respectively.Facultad de Ciencias Veterinarias2016-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf25-31http://sedici.unlp.edu.ar/handle/10915/138613spainfo:eu-repo/semantics/altIdentifier/issn/1927-3037info:eu-repo/semantics/altIdentifier/doi/10.6000/1927-3037.2016.05.01.4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:56:08Zoai:sedici.unlp.edu.ar:10915/138613Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:56:08.936SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| title |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| spellingShingle |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts Romero, María Cristina Veterinaria Anthracene bioavailability biodegradation Candida parasilopsis desorption model Pichia anomala Rhodothorula mucilaginosa sophorolipid |
| title_short |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| title_full |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| title_fullStr |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| title_full_unstemmed |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| title_sort |
Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts |
| dc.creator.none.fl_str_mv |
Romero, María Cristina Chiaravalli, Juan Carlos Reinoso, Enso Hugo |
| author |
Romero, María Cristina |
| author_facet |
Romero, María Cristina Chiaravalli, Juan Carlos Reinoso, Enso Hugo |
| author_role |
author |
| author2 |
Chiaravalli, Juan Carlos Reinoso, Enso Hugo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Veterinaria Anthracene bioavailability biodegradation Candida parasilopsis desorption model Pichia anomala Rhodothorula mucilaginosa sophorolipid |
| topic |
Veterinaria Anthracene bioavailability biodegradation Candida parasilopsis desorption model Pichia anomala Rhodothorula mucilaginosa sophorolipid |
| dc.description.none.fl_txt_mv |
The organic pollutan adsorption/desorption process by microbial degradation had been less studied than metal ones. The sorption assays alone did not predict desorption, due to hysteresis, irreversibility, fixed compounds in different sites, with diverse desorption rates. Most of the studies dealt with bacteria rather than filamentous fungi and yeasts. So, our aims were to isolate yeasts from polluted sediments, to quantify its potential to uptake anthracene (An) and to evaluate the bioavailability by a desorption model. Yeasts were isolated from hydrocarbon-polluted samples, 40-isolates grew in anthracene-plates. Molecular characterization was achieved by sequence analysis of the ITS1-5.8S rRNA-ITS4 and 26S rRNA regions; morphological and physiological determination were also done. Candida parasilopsis , Pichia anomala and Rhodothorula mucilaginosa were the prevalent yeasts. An-degradation was assessed in soil-systems with 0, 50, 100, 150, 200 and 250 I¼g An/l, 3 differentes sorbens types, organic carbon, organic nitrogen, PAHs, sand:silt:clay, pH and cation exchange capacity. Sophorolipids excretion were confirmed by HPLC, UV-detector with active fraction at 9.669 min (RT 9.646 min = sophorolipid-standard). A desorption model with equilibrium, nonequilibrium and nondesorption areas, was applied to explain the experimental data, An-transformation was greater in the organic liquid-phase than in the soil-sorbed ones; the desorption-coefficients and soil components were negatively correlated with the kinetic parameters. The An-release depended on the sophorolipid excretion, soil matrix and particles sizes. Desorption parameters significantly fitted the yeast uptake, with R 2 = 0.97, R 2 = 0.90 and R 2 = 0.97 for C. parasilopsis , P. anomala and R. mucilaginosa, respectively. Facultad de Ciencias Veterinarias |
| description |
The organic pollutan adsorption/desorption process by microbial degradation had been less studied than metal ones. The sorption assays alone did not predict desorption, due to hysteresis, irreversibility, fixed compounds in different sites, with diverse desorption rates. Most of the studies dealt with bacteria rather than filamentous fungi and yeasts. So, our aims were to isolate yeasts from polluted sediments, to quantify its potential to uptake anthracene (An) and to evaluate the bioavailability by a desorption model. Yeasts were isolated from hydrocarbon-polluted samples, 40-isolates grew in anthracene-plates. Molecular characterization was achieved by sequence analysis of the ITS1-5.8S rRNA-ITS4 and 26S rRNA regions; morphological and physiological determination were also done. Candida parasilopsis , Pichia anomala and Rhodothorula mucilaginosa were the prevalent yeasts. An-degradation was assessed in soil-systems with 0, 50, 100, 150, 200 and 250 I¼g An/l, 3 differentes sorbens types, organic carbon, organic nitrogen, PAHs, sand:silt:clay, pH and cation exchange capacity. Sophorolipids excretion were confirmed by HPLC, UV-detector with active fraction at 9.669 min (RT 9.646 min = sophorolipid-standard). A desorption model with equilibrium, nonequilibrium and nondesorption areas, was applied to explain the experimental data, An-transformation was greater in the organic liquid-phase than in the soil-sorbed ones; the desorption-coefficients and soil components were negatively correlated with the kinetic parameters. The An-release depended on the sophorolipid excretion, soil matrix and particles sizes. Desorption parameters significantly fitted the yeast uptake, with R 2 = 0.97, R 2 = 0.90 and R 2 = 0.97 for C. parasilopsis , P. anomala and R. mucilaginosa, respectively. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-03-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/138613 |
| url |
http://sedici.unlp.edu.ar/handle/10915/138613 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1927-3037 info:eu-repo/semantics/altIdentifier/doi/10.6000/1927-3037.2016.05.01.4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 25-31 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605667671146496 |
| score |
12.976206 |