Clumpy disc and bulge formation
- Autores
- Pérez, Josefa; Valenzuela, Octavio; Tissera, Patricia Beatriz; Michel-Dansac, Leo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z̃2-3.We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classicallike bulge with a Séersic index, n>2. Our physically motivated SNfeedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Galaxies: bulges
Galaxies: evolution
Galaxies: formation Galaxies: interactions. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85308
Ver los metadatos del registro completo
id |
SEDICI_e4a0dd92bd68b0bf6754648c7fade70e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85308 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Clumpy disc and bulge formationPérez, JosefaValenzuela, OctavioTissera, Patricia BeatrizMichel-Dansac, LeoCiencias AstronómicasGalaxies: bulgesGalaxies: evolutionGalaxies: formation Galaxies: interactions.We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z̃2-3.We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classicallike bulge with a Séersic index, n>2. Our physically motivated SNfeedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy.Facultad de Ciencias Astronómicas y Geofísicas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf259-265http://sedici.unlp.edu.ar/handle/10915/85308enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stt1563info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:29Zoai:sedici.unlp.edu.ar:10915/85308Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:30.123SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Clumpy disc and bulge formation |
title |
Clumpy disc and bulge formation |
spellingShingle |
Clumpy disc and bulge formation Pérez, Josefa Ciencias Astronómicas Galaxies: bulges Galaxies: evolution Galaxies: formation Galaxies: interactions. |
title_short |
Clumpy disc and bulge formation |
title_full |
Clumpy disc and bulge formation |
title_fullStr |
Clumpy disc and bulge formation |
title_full_unstemmed |
Clumpy disc and bulge formation |
title_sort |
Clumpy disc and bulge formation |
dc.creator.none.fl_str_mv |
Pérez, Josefa Valenzuela, Octavio Tissera, Patricia Beatriz Michel-Dansac, Leo |
author |
Pérez, Josefa |
author_facet |
Pérez, Josefa Valenzuela, Octavio Tissera, Patricia Beatriz Michel-Dansac, Leo |
author_role |
author |
author2 |
Valenzuela, Octavio Tissera, Patricia Beatriz Michel-Dansac, Leo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Galaxies: bulges Galaxies: evolution Galaxies: formation Galaxies: interactions. |
topic |
Ciencias Astronómicas Galaxies: bulges Galaxies: evolution Galaxies: formation Galaxies: interactions. |
dc.description.none.fl_txt_mv |
We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z̃2-3.We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classicallike bulge with a Séersic index, n>2. Our physically motivated SNfeedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy. Facultad de Ciencias Astronómicas y Geofísicas |
description |
We present a set of hydrodynamical/N-body controlled simulations of isolated gas-rich galaxies that self-consistently include supernova (SN) feedback and a detailed chemical evolution model, both tested in cosmological simulations. The initial conditions are motivated by the observed star-forming galaxies at z̃2-3.We find that the presence of a multiphase interstellar media in our models promotes the growth of disc instability favouring the formation of clumps which, in general, are not easily disrupted on time-scales compared to the migration time. We show that stellar clumps migrate towards the central region and contribute to form a classicallike bulge with a Séersic index, n>2. Our physically motivated SNfeedback has a mild influence on clump survival and evolution, partially limiting the mass growth of clumps as the energy released per SN event is increased, with the consequent flattening of the bulge profile. This regulation does not prevent the building of a classical-like bulge even for the most energetic feedback tested. Our SN feedback model is able to establish self-regulated star formation, producing mass-loaded outflows and stellar age spreads comparable to observations. We find that the bulge formation by clumps may coexist with other channels of bulge assembly such as bars and mergers. Our results suggest that galactic bulges could be interpreted as composite systems with structural components and stellar populations storing archaeological information of the dynamical history of their galaxy. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85308 |
url |
http://sedici.unlp.edu.ar/handle/10915/85308 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0035-8711 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stt1563 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 259-265 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616037488656384 |
score |
13.070432 |