Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances

Autores
Perez, María Josefa; Tissera, Patricia Beatriz; Scannapieco, C.; Lambas, D. G.; De Rossi, M. E.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We perform a statistical analysis of galaxies in pairs with a Λ-CDM scenario by using the chemical GADGET-2 of Scannapieco et al. (2005, MNRAS, 364, 552) in order to study the effects of galaxy interactions on colours and metallicities. We find that galaxy-galaxy interactions can produce a bimodal colour distribution where galaxies with significant recent star formation activity contribute mainly to blue colours. In the simulations, the colours and the fractions of recently formed stars of galaxies in pairs depend on their environments more strongly than those of galaxies without close companions, suggesting that interactions play an important role in galaxy evolution. If the metallicity of the stellar populations is used as the chemical indicator, we find that the simulated galaxies determine luminosity-metallicity and stellar mass-metallicity relations that do not depend on the presence of a close companion. However, in the case of the luminosity-metallicity relation, at a given level of enrichment, we detect a systematic displacement of the relation to brighter magnitudes for active star forming systems. Regardless of relative distance and current level of star formation (SF) activity, galaxies in pairs have stellar populations with higher level of enrichment than galaxies without a close companion. In the case of the gas component, this is no longer valid for galaxies in pairs with passive star formation that only show an excess of metals for very close pair members, consequence of an important recent past star-formation activity. In agreement with observations, the signature of gas inflows driven by interactions can be also detected in the lower mean O/H abundances measured in the central regions of galaxies in pairs. Our results suggest that interactions play a significant role in the determination of colour and chemical properties of galaxies in hierarchical clustering scenarios, although SN energy feedback is needed to achieve a full agreement.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: interactions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83090

id SEDICI_0d6a9d12339fdac5840403da79d102e9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83090
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundancesPerez, María JosefaTissera, Patricia BeatrizScannapieco, C.Lambas, D. G.De Rossi, M. E.Ciencias AstronómicasGalaxies: evolutionGalaxies: formationGalaxies: interactionsWe perform a statistical analysis of galaxies in pairs with a Λ-CDM scenario by using the chemical GADGET-2 of Scannapieco et al. (2005, MNRAS, 364, 552) in order to study the effects of galaxy interactions on colours and metallicities. We find that galaxy-galaxy interactions can produce a bimodal colour distribution where galaxies with significant recent star formation activity contribute mainly to blue colours. In the simulations, the colours and the fractions of recently formed stars of galaxies in pairs depend on their environments more strongly than those of galaxies without close companions, suggesting that interactions play an important role in galaxy evolution. If the metallicity of the stellar populations is used as the chemical indicator, we find that the simulated galaxies determine luminosity-metallicity and stellar mass-metallicity relations that do not depend on the presence of a close companion. However, in the case of the luminosity-metallicity relation, at a given level of enrichment, we detect a systematic displacement of the relation to brighter magnitudes for active star forming systems. Regardless of relative distance and current level of star formation (SF) activity, galaxies in pairs have stellar populations with higher level of enrichment than galaxies without a close companion. In the case of the gas component, this is no longer valid for galaxies in pairs with passive star formation that only show an excess of metals for very close pair members, consequence of an important recent past star-formation activity. In agreement with observations, the signature of gas inflows driven by interactions can be also detected in the lower mean O/H abundances measured in the central regions of galaxies in pairs. Our results suggest that interactions play a significant role in the determination of colour and chemical properties of galaxies in hierarchical clustering scenarios, although SN energy feedback is needed to achieve a full agreement.Facultad de Ciencias Astronómicas y Geofísicas2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf361-369http://sedici.unlp.edu.ar/handle/10915/83090enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20054761info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:01Zoai:sedici.unlp.edu.ar:10915/83090Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:01.826SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
title Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
spellingShingle Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
Perez, María Josefa
Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: interactions
title_short Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
title_full Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
title_fullStr Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
title_full_unstemmed Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
title_sort Galaxy pairs in cosmological simulations: Effects of interactions on colours and chemical abundances
dc.creator.none.fl_str_mv Perez, María Josefa
Tissera, Patricia Beatriz
Scannapieco, C.
Lambas, D. G.
De Rossi, M. E.
author Perez, María Josefa
author_facet Perez, María Josefa
Tissera, Patricia Beatriz
Scannapieco, C.
Lambas, D. G.
De Rossi, M. E.
author_role author
author2 Tissera, Patricia Beatriz
Scannapieco, C.
Lambas, D. G.
De Rossi, M. E.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: interactions
topic Ciencias Astronómicas
Galaxies: evolution
Galaxies: formation
Galaxies: interactions
dc.description.none.fl_txt_mv We perform a statistical analysis of galaxies in pairs with a Λ-CDM scenario by using the chemical GADGET-2 of Scannapieco et al. (2005, MNRAS, 364, 552) in order to study the effects of galaxy interactions on colours and metallicities. We find that galaxy-galaxy interactions can produce a bimodal colour distribution where galaxies with significant recent star formation activity contribute mainly to blue colours. In the simulations, the colours and the fractions of recently formed stars of galaxies in pairs depend on their environments more strongly than those of galaxies without close companions, suggesting that interactions play an important role in galaxy evolution. If the metallicity of the stellar populations is used as the chemical indicator, we find that the simulated galaxies determine luminosity-metallicity and stellar mass-metallicity relations that do not depend on the presence of a close companion. However, in the case of the luminosity-metallicity relation, at a given level of enrichment, we detect a systematic displacement of the relation to brighter magnitudes for active star forming systems. Regardless of relative distance and current level of star formation (SF) activity, galaxies in pairs have stellar populations with higher level of enrichment than galaxies without a close companion. In the case of the gas component, this is no longer valid for galaxies in pairs with passive star formation that only show an excess of metals for very close pair members, consequence of an important recent past star-formation activity. In agreement with observations, the signature of gas inflows driven by interactions can be also detected in the lower mean O/H abundances measured in the central regions of galaxies in pairs. Our results suggest that interactions play a significant role in the determination of colour and chemical properties of galaxies in hierarchical clustering scenarios, although SN energy feedback is needed to achieve a full agreement.
Facultad de Ciencias Astronómicas y Geofísicas
description We perform a statistical analysis of galaxies in pairs with a Λ-CDM scenario by using the chemical GADGET-2 of Scannapieco et al. (2005, MNRAS, 364, 552) in order to study the effects of galaxy interactions on colours and metallicities. We find that galaxy-galaxy interactions can produce a bimodal colour distribution where galaxies with significant recent star formation activity contribute mainly to blue colours. In the simulations, the colours and the fractions of recently formed stars of galaxies in pairs depend on their environments more strongly than those of galaxies without close companions, suggesting that interactions play an important role in galaxy evolution. If the metallicity of the stellar populations is used as the chemical indicator, we find that the simulated galaxies determine luminosity-metallicity and stellar mass-metallicity relations that do not depend on the presence of a close companion. However, in the case of the luminosity-metallicity relation, at a given level of enrichment, we detect a systematic displacement of the relation to brighter magnitudes for active star forming systems. Regardless of relative distance and current level of star formation (SF) activity, galaxies in pairs have stellar populations with higher level of enrichment than galaxies without a close companion. In the case of the gas component, this is no longer valid for galaxies in pairs with passive star formation that only show an excess of metals for very close pair members, consequence of an important recent past star-formation activity. In agreement with observations, the signature of gas inflows driven by interactions can be also detected in the lower mean O/H abundances measured in the central regions of galaxies in pairs. Our results suggest that interactions play a significant role in the determination of colour and chemical properties of galaxies in hierarchical clustering scenarios, although SN energy feedback is needed to achieve a full agreement.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83090
url http://sedici.unlp.edu.ar/handle/10915/83090
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20054761
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
361-369
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260353949368320
score 13.13397