q-thermostatistics and the analytical treatment of the ideal Fermi gas
- Autores
- Martínez, S.; Pennini, Flavia; Plastino, Ángel Luis; Portesi, Mariela Adelina
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We discuss relevant aspects of the exact q -thermostatistical treatment for an ideal Fermi system. The grand-canonical exact generalized partition function is given for arbitrary values of the nonextensivity index q , and the ensuing statistics is derived. Special attention is paid to the mean occupation numbers of single-particle levels. Limiting instances of interest are discussed in some detail, namely, the thermodynamic limit, considering in particular both the high- and low-temperature regimes, and the approximate results pertaining to the case q ∼ 1 (the conventional Fermi–Dirac statistics corresponds to q = 1). We compare our findings with previous Tsallis’ literature.
Facultad de Ciencias Exactas
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Tsallis’ generalized statistics
Optimized Lagrange multipliers approach
Thermodynamics
Ideal Fermi gas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/131430
Ver los metadatos del registro completo
id |
SEDICI_e47e95e11c36db486000639a689d3dc3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/131430 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
q-thermostatistics and the analytical treatment of the ideal Fermi gasMartínez, S.Pennini, FlaviaPlastino, Ángel LuisPortesi, Mariela AdelinaCiencias ExactasFísicaTsallis’ generalized statisticsOptimized Lagrange multipliers approachThermodynamicsIdeal Fermi gasWe discuss relevant aspects of the exact q -thermostatistical treatment for an ideal Fermi system. The grand-canonical exact generalized partition function is given for arbitrary values of the nonextensivity index q , and the ensuing statistics is derived. Special attention is paid to the mean occupation numbers of single-particle levels. Limiting instances of interest are discussed in some detail, namely, the thermodynamic limit, considering in particular both the high- and low-temperature regimes, and the approximate results pertaining to the case q ∼ 1 (the conventional Fermi–Dirac statistics corresponds to q = 1). We compare our findings with previous Tsallis’ literature.Facultad de Ciencias ExactasInstituto de Física La Plata2004-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf230-248http://sedici.unlp.edu.ar/handle/10915/131430enginfo:eu-repo/semantics/altIdentifier/issn/0378-4371info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0304672info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2003.10.026info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:13Zoai:sedici.unlp.edu.ar:10915/131430Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:13.825SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
title |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
spellingShingle |
q-thermostatistics and the analytical treatment of the ideal Fermi gas Martínez, S. Ciencias Exactas Física Tsallis’ generalized statistics Optimized Lagrange multipliers approach Thermodynamics Ideal Fermi gas |
title_short |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
title_full |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
title_fullStr |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
title_full_unstemmed |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
title_sort |
q-thermostatistics and the analytical treatment of the ideal Fermi gas |
dc.creator.none.fl_str_mv |
Martínez, S. Pennini, Flavia Plastino, Ángel Luis Portesi, Mariela Adelina |
author |
Martínez, S. |
author_facet |
Martínez, S. Pennini, Flavia Plastino, Ángel Luis Portesi, Mariela Adelina |
author_role |
author |
author2 |
Pennini, Flavia Plastino, Ángel Luis Portesi, Mariela Adelina |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Tsallis’ generalized statistics Optimized Lagrange multipliers approach Thermodynamics Ideal Fermi gas |
topic |
Ciencias Exactas Física Tsallis’ generalized statistics Optimized Lagrange multipliers approach Thermodynamics Ideal Fermi gas |
dc.description.none.fl_txt_mv |
We discuss relevant aspects of the exact q -thermostatistical treatment for an ideal Fermi system. The grand-canonical exact generalized partition function is given for arbitrary values of the nonextensivity index q , and the ensuing statistics is derived. Special attention is paid to the mean occupation numbers of single-particle levels. Limiting instances of interest are discussed in some detail, namely, the thermodynamic limit, considering in particular both the high- and low-temperature regimes, and the approximate results pertaining to the case q ∼ 1 (the conventional Fermi–Dirac statistics corresponds to q = 1). We compare our findings with previous Tsallis’ literature. Facultad de Ciencias Exactas Instituto de Física La Plata |
description |
We discuss relevant aspects of the exact q -thermostatistical treatment for an ideal Fermi system. The grand-canonical exact generalized partition function is given for arbitrary values of the nonextensivity index q , and the ensuing statistics is derived. Special attention is paid to the mean occupation numbers of single-particle levels. Limiting instances of interest are discussed in some detail, namely, the thermodynamic limit, considering in particular both the high- and low-temperature regimes, and the approximate results pertaining to the case q ∼ 1 (the conventional Fermi–Dirac statistics corresponds to q = 1). We compare our findings with previous Tsallis’ literature. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/131430 |
url |
http://sedici.unlp.edu.ar/handle/10915/131430 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0378-4371 info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0304672 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2003.10.026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 230-248 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616192362283008 |
score |
13.070432 |