Combining quantitative and qualitative reasoning in defeasible argumentation
- Autores
- Chesñevar, Carlos Iván; Simari, Guillermo Ricardo
- Año de publicación
- 2002
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Labeled Deductive Systems (LDS) were developed as a rigorous but exible method- ology to formalize complex logical systems, such as temporal logics, database query languages and defeasible reasoning systems. LDSAR is a LDS-based framework for defeasible argumentation which subsumes di erent existing argumentation frameworks, providing a testbed for the study of dif- ferent relevant features (such as logical properties and ontological aspects, among others). This paper presents LDS AR, an extension of LDSAR that incorporates the ability to combine quantitative and qualitative features within a uni ed argumentative setting. Our approach involves the assignment of certainty factors to formulas in the knowl- edge base. These values are propagated when performing argumentative inference, o ering an alternative source of information for evaluating the strength of arguments in the dialectical analysis. We will also discuss some emerging logical properties of the resulting framework.
Eje: Lógica e Inteligencia artificial
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Defeasible Argumentation
Quantitative Reasoning
Labelled Deductive Systems
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23110
Ver los metadatos del registro completo
id |
SEDICI_e4421bf11aac25165ac008cc959857ac |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23110 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Combining quantitative and qualitative reasoning in defeasible argumentationChesñevar, Carlos IvánSimari, Guillermo RicardoCiencias InformáticasDefeasible ArgumentationQuantitative ReasoningLabelled Deductive SystemsARTIFICIAL INTELLIGENCELabeled Deductive Systems (LDS) were developed as a rigorous but exible method- ology to formalize complex logical systems, such as temporal logics, database query languages and defeasible reasoning systems. LDSAR is a LDS-based framework for defeasible argumentation which subsumes di erent existing argumentation frameworks, providing a testbed for the study of dif- ferent relevant features (such as logical properties and ontological aspects, among others). This paper presents LDS AR, an extension of LDSAR that incorporates the ability to combine quantitative and qualitative features within a uni ed argumentative setting. Our approach involves the assignment of certainty factors to formulas in the knowl- edge base. These values are propagated when performing argumentative inference, o ering an alternative source of information for evaluating the strength of arguments in the dialectical analysis. We will also discuss some emerging logical properties of the resulting framework.Eje: Lógica e Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf272-283http://sedici.unlp.edu.ar/handle/10915/23110spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:56Zoai:sedici.unlp.edu.ar:10915/23110Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:56.498SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Combining quantitative and qualitative reasoning in defeasible argumentation |
title |
Combining quantitative and qualitative reasoning in defeasible argumentation |
spellingShingle |
Combining quantitative and qualitative reasoning in defeasible argumentation Chesñevar, Carlos Iván Ciencias Informáticas Defeasible Argumentation Quantitative Reasoning Labelled Deductive Systems ARTIFICIAL INTELLIGENCE |
title_short |
Combining quantitative and qualitative reasoning in defeasible argumentation |
title_full |
Combining quantitative and qualitative reasoning in defeasible argumentation |
title_fullStr |
Combining quantitative and qualitative reasoning in defeasible argumentation |
title_full_unstemmed |
Combining quantitative and qualitative reasoning in defeasible argumentation |
title_sort |
Combining quantitative and qualitative reasoning in defeasible argumentation |
dc.creator.none.fl_str_mv |
Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author |
Chesñevar, Carlos Iván |
author_facet |
Chesñevar, Carlos Iván Simari, Guillermo Ricardo |
author_role |
author |
author2 |
Simari, Guillermo Ricardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Defeasible Argumentation Quantitative Reasoning Labelled Deductive Systems ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas Defeasible Argumentation Quantitative Reasoning Labelled Deductive Systems ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
Labeled Deductive Systems (LDS) were developed as a rigorous but exible method- ology to formalize complex logical systems, such as temporal logics, database query languages and defeasible reasoning systems. LDSAR is a LDS-based framework for defeasible argumentation which subsumes di erent existing argumentation frameworks, providing a testbed for the study of dif- ferent relevant features (such as logical properties and ontological aspects, among others). This paper presents LDS AR, an extension of LDSAR that incorporates the ability to combine quantitative and qualitative features within a uni ed argumentative setting. Our approach involves the assignment of certainty factors to formulas in the knowl- edge base. These values are propagated when performing argumentative inference, o ering an alternative source of information for evaluating the strength of arguments in the dialectical analysis. We will also discuss some emerging logical properties of the resulting framework. Eje: Lógica e Inteligencia artificial Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Labeled Deductive Systems (LDS) were developed as a rigorous but exible method- ology to formalize complex logical systems, such as temporal logics, database query languages and defeasible reasoning systems. LDSAR is a LDS-based framework for defeasible argumentation which subsumes di erent existing argumentation frameworks, providing a testbed for the study of dif- ferent relevant features (such as logical properties and ontological aspects, among others). This paper presents LDS AR, an extension of LDSAR that incorporates the ability to combine quantitative and qualitative features within a uni ed argumentative setting. Our approach involves the assignment of certainty factors to formulas in the knowl- edge base. These values are propagated when performing argumentative inference, o ering an alternative source of information for evaluating the strength of arguments in the dialectical analysis. We will also discuss some emerging logical properties of the resulting framework. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23110 |
url |
http://sedici.unlp.edu.ar/handle/10915/23110 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 272-283 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063906371403776 |
score |
13.22299 |