Hibridización de K-Means a través de técnicas metaheurísticas

Autores
Villagra, Andrea; Pandolfi, Daniel
Año de publicación
2008
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En los últimos años, ha existido un gran crecimiento en nuestras capacidades de generar y colectar datos, debido básicamente al gran poder de procesamiento de las máquinas y a su bajo costo de almacenamiento. Sin embargo, dentro de estas enormes masas de datos existe una gran cantidad de información “oculta”, de gran importancia estratégica, a la que no se puede acceder por las técnicas clásicas de recuperación de la información. La Minería de Datos implica “escabar”en esa inmensidad de datos, en búsqueda de patrones, asociaciones o predicciones que permitan transformar esa maraña de datos en información útil. Una de las tareas utilizadas en minería de datos es el clustering (agrupamiento) y un algoritmo muy popular y simple usado en esta tarea es K-means. A pesar de su popularidad el mencionado algoritmo sufre de algunas dificultades. K-means requiere varias iteraciones sobre todo el conjunto de datos, lo cual puede hacerlo muy costoso computacionalmente cuando se lo aplica a grandes bases de datos, el número de clusters K debe ser suministrado por el usuario y la búsqueda es propensa a quedar atrapada en mínimos locales. Se pretende a través de esta línea de investigación desarrollar técnicas avanzadas o mejoradas de minería de datos, particularmente en la tarea de clustering y además, proponer mejoras al algoritmo de K-means basándose en la aplicación de técnicas Metaheurísticas.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Intelligent agents
hibridización
K-Means
técnicas metaheurísticas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/20520

id SEDICI_e3c93d1ae607291c96c42025c06b5147
oai_identifier_str oai:sedici.unlp.edu.ar:10915/20520
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Hibridización de K-Means a través de técnicas metaheurísticasVillagra, AndreaPandolfi, DanielCiencias InformáticasIntelligent agentshibridizaciónK-Meanstécnicas metaheurísticasEn los últimos años, ha existido un gran crecimiento en nuestras capacidades de generar y colectar datos, debido básicamente al gran poder de procesamiento de las máquinas y a su bajo costo de almacenamiento. Sin embargo, dentro de estas enormes masas de datos existe una gran cantidad de información “oculta”, de gran importancia estratégica, a la que no se puede acceder por las técnicas clásicas de recuperación de la información. La Minería de Datos implica “escabar”en esa inmensidad de datos, en búsqueda de patrones, asociaciones o predicciones que permitan transformar esa maraña de datos en información útil. Una de las tareas utilizadas en minería de datos es el clustering (agrupamiento) y un algoritmo muy popular y simple usado en esta tarea es K-means. A pesar de su popularidad el mencionado algoritmo sufre de algunas dificultades. K-means requiere varias iteraciones sobre todo el conjunto de datos, lo cual puede hacerlo muy costoso computacionalmente cuando se lo aplica a grandes bases de datos, el número de clusters K debe ser suministrado por el usuario y la búsqueda es propensa a quedar atrapada en mínimos locales. Se pretende a través de esta línea de investigación desarrollar técnicas avanzadas o mejoradas de minería de datos, particularmente en la tarea de clustering y además, proponer mejoras al algoritmo de K-means basándose en la aplicación de técnicas Metaheurísticas.Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2008-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf62-65http://sedici.unlp.edu.ar/handle/10915/20520spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:09Zoai:sedici.unlp.edu.ar:10915/20520Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:09.323SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Hibridización de K-Means a través de técnicas metaheurísticas
title Hibridización de K-Means a través de técnicas metaheurísticas
spellingShingle Hibridización de K-Means a través de técnicas metaheurísticas
Villagra, Andrea
Ciencias Informáticas
Intelligent agents
hibridización
K-Means
técnicas metaheurísticas
title_short Hibridización de K-Means a través de técnicas metaheurísticas
title_full Hibridización de K-Means a través de técnicas metaheurísticas
title_fullStr Hibridización de K-Means a través de técnicas metaheurísticas
title_full_unstemmed Hibridización de K-Means a través de técnicas metaheurísticas
title_sort Hibridización de K-Means a través de técnicas metaheurísticas
dc.creator.none.fl_str_mv Villagra, Andrea
Pandolfi, Daniel
author Villagra, Andrea
author_facet Villagra, Andrea
Pandolfi, Daniel
author_role author
author2 Pandolfi, Daniel
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Intelligent agents
hibridización
K-Means
técnicas metaheurísticas
topic Ciencias Informáticas
Intelligent agents
hibridización
K-Means
técnicas metaheurísticas
dc.description.none.fl_txt_mv En los últimos años, ha existido un gran crecimiento en nuestras capacidades de generar y colectar datos, debido básicamente al gran poder de procesamiento de las máquinas y a su bajo costo de almacenamiento. Sin embargo, dentro de estas enormes masas de datos existe una gran cantidad de información “oculta”, de gran importancia estratégica, a la que no se puede acceder por las técnicas clásicas de recuperación de la información. La Minería de Datos implica “escabar”en esa inmensidad de datos, en búsqueda de patrones, asociaciones o predicciones que permitan transformar esa maraña de datos en información útil. Una de las tareas utilizadas en minería de datos es el clustering (agrupamiento) y un algoritmo muy popular y simple usado en esta tarea es K-means. A pesar de su popularidad el mencionado algoritmo sufre de algunas dificultades. K-means requiere varias iteraciones sobre todo el conjunto de datos, lo cual puede hacerlo muy costoso computacionalmente cuando se lo aplica a grandes bases de datos, el número de clusters K debe ser suministrado por el usuario y la búsqueda es propensa a quedar atrapada en mínimos locales. Se pretende a través de esta línea de investigación desarrollar técnicas avanzadas o mejoradas de minería de datos, particularmente en la tarea de clustering y además, proponer mejoras al algoritmo de K-means basándose en la aplicación de técnicas Metaheurísticas.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description En los últimos años, ha existido un gran crecimiento en nuestras capacidades de generar y colectar datos, debido básicamente al gran poder de procesamiento de las máquinas y a su bajo costo de almacenamiento. Sin embargo, dentro de estas enormes masas de datos existe una gran cantidad de información “oculta”, de gran importancia estratégica, a la que no se puede acceder por las técnicas clásicas de recuperación de la información. La Minería de Datos implica “escabar”en esa inmensidad de datos, en búsqueda de patrones, asociaciones o predicciones que permitan transformar esa maraña de datos en información útil. Una de las tareas utilizadas en minería de datos es el clustering (agrupamiento) y un algoritmo muy popular y simple usado en esta tarea es K-means. A pesar de su popularidad el mencionado algoritmo sufre de algunas dificultades. K-means requiere varias iteraciones sobre todo el conjunto de datos, lo cual puede hacerlo muy costoso computacionalmente cuando se lo aplica a grandes bases de datos, el número de clusters K debe ser suministrado por el usuario y la búsqueda es propensa a quedar atrapada en mínimos locales. Se pretende a través de esta línea de investigación desarrollar técnicas avanzadas o mejoradas de minería de datos, particularmente en la tarea de clustering y además, proponer mejoras al algoritmo de K-means basándose en la aplicación de técnicas Metaheurísticas.
publishDate 2008
dc.date.none.fl_str_mv 2008-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/20520
url http://sedici.unlp.edu.ar/handle/10915/20520
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
62-65
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260107528765440
score 13.13397