Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control

Autores
Etchechoury, María del Rosario
Año de publicación
2001
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Muravchik, Carlos Horacio
Muschietti, María Amelia
Descripción
Los Sistemas Diferenciales Algebraicos (SDA) son también conocidos como sistemas singulares, implícitos, descriptores o sistemas generalizados. Surgen naturalmente como modelos dinámicos de aplicaciones de la ingeniería (tales como redes de circuitos eléctricos [1], sistemas de potencia [2], sistemas mecánicos con restricciones [3], ingeniería aeroespacial [4] y procesos químicos [5]); se utilizan también para modelar sistemas sociales, sistemas económicos, sistemas biológicos; etc. En muchos casos los SDA pueden resolverse eficientemente por medio de métodos numéricos standard utilizados para la resolución de Sistemas Diferenciales Ordinarios (SDO). Este enfoque fue introducido por Gear [6], y utilizado por diferentes autores, por ejemplo en [7] y [8]. Sin embargo, los SDA suelen tener algunas propiedades que provocan que estos métodos numéricos fracasen. En [7] y [9], por ejemplo, se presentan algunos resultados acerca de las causas de tales dificultades para el caso particular de una clase de SDA lineales. Las técnicas utilizadas en estos trabajos son de naturaleza algebraica, y no brindan una información completa acerca de la existencia y unicidad de soluciones. Otro enfoque diferente surge al considerar un SDA como un conjunto de ecuaciones diferenciales sobre una variedad. Esta aproximación geométrica permite desarrollar una teoría de existencia y unicidad de soluciones que da lugar a conocer nuevas propiedades de los SDA, y a analizar cuales son las causas por la que los métodos numéricos fallan algunas veces, [10].
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Matemáticas
Álgebra diferencial
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/2558

id SEDICI_e37828aa6501382402d4df6c887ff93d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/2558
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y controlEtchechoury, María del RosarioCiencias ExactasMatemáticaMatemáticasÁlgebra diferencialLos Sistemas Diferenciales Algebraicos (SDA) son también conocidos como sistemas singulares, implícitos, descriptores o sistemas generalizados. Surgen naturalmente como modelos dinámicos de aplicaciones de la ingeniería (tales como redes de circuitos eléctricos [1], sistemas de potencia [2], sistemas mecánicos con restricciones [3], ingeniería aeroespacial [4] y procesos químicos [5]); se utilizan también para modelar sistemas sociales, sistemas económicos, sistemas biológicos; etc. En muchos casos los SDA pueden resolverse eficientemente por medio de métodos numéricos standard utilizados para la resolución de Sistemas Diferenciales Ordinarios (SDO). Este enfoque fue introducido por Gear [6], y utilizado por diferentes autores, por ejemplo en [7] y [8]. Sin embargo, los SDA suelen tener algunas propiedades que provocan que estos métodos numéricos fracasen. En [7] y [9], por ejemplo, se presentan algunos resultados acerca de las causas de tales dificultades para el caso particular de una clase de SDA lineales. Las técnicas utilizadas en estos trabajos son de naturaleza algebraica, y no brindan una información completa acerca de la existencia y unicidad de soluciones. Otro enfoque diferente surge al considerar un SDA como un conjunto de ecuaciones diferenciales sobre una variedad. Esta aproximación geométrica permite desarrollar una teoría de existencia y unicidad de soluciones que da lugar a conocer nuevas propiedades de los SDA, y a analizar cuales son las causas por la que los métodos numéricos fallan algunas veces, [10].Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasMuravchik, Carlos HoracioMuschietti, María Amelia2001info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2558https://doi.org/10.35537/10915/2558spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:21:49Zoai:sedici.unlp.edu.ar:10915/2558Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:21:50.005SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
title Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
spellingShingle Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
Etchechoury, María del Rosario
Ciencias Exactas
Matemática
Matemáticas
Álgebra diferencial
title_short Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
title_full Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
title_fullStr Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
title_full_unstemmed Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
title_sort Sistemas diferenciales-algebraicos: aplicaciones a perturbación singular y control
dc.creator.none.fl_str_mv Etchechoury, María del Rosario
author Etchechoury, María del Rosario
author_facet Etchechoury, María del Rosario
author_role author
dc.contributor.none.fl_str_mv Muravchik, Carlos Horacio
Muschietti, María Amelia
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Matemáticas
Álgebra diferencial
topic Ciencias Exactas
Matemática
Matemáticas
Álgebra diferencial
dc.description.none.fl_txt_mv Los Sistemas Diferenciales Algebraicos (SDA) son también conocidos como sistemas singulares, implícitos, descriptores o sistemas generalizados. Surgen naturalmente como modelos dinámicos de aplicaciones de la ingeniería (tales como redes de circuitos eléctricos [1], sistemas de potencia [2], sistemas mecánicos con restricciones [3], ingeniería aeroespacial [4] y procesos químicos [5]); se utilizan también para modelar sistemas sociales, sistemas económicos, sistemas biológicos; etc. En muchos casos los SDA pueden resolverse eficientemente por medio de métodos numéricos standard utilizados para la resolución de Sistemas Diferenciales Ordinarios (SDO). Este enfoque fue introducido por Gear [6], y utilizado por diferentes autores, por ejemplo en [7] y [8]. Sin embargo, los SDA suelen tener algunas propiedades que provocan que estos métodos numéricos fracasen. En [7] y [9], por ejemplo, se presentan algunos resultados acerca de las causas de tales dificultades para el caso particular de una clase de SDA lineales. Las técnicas utilizadas en estos trabajos son de naturaleza algebraica, y no brindan una información completa acerca de la existencia y unicidad de soluciones. Otro enfoque diferente surge al considerar un SDA como un conjunto de ecuaciones diferenciales sobre una variedad. Esta aproximación geométrica permite desarrollar una teoría de existencia y unicidad de soluciones que da lugar a conocer nuevas propiedades de los SDA, y a analizar cuales son las causas por la que los métodos numéricos fallan algunas veces, [10].
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description Los Sistemas Diferenciales Algebraicos (SDA) son también conocidos como sistemas singulares, implícitos, descriptores o sistemas generalizados. Surgen naturalmente como modelos dinámicos de aplicaciones de la ingeniería (tales como redes de circuitos eléctricos [1], sistemas de potencia [2], sistemas mecánicos con restricciones [3], ingeniería aeroespacial [4] y procesos químicos [5]); se utilizan también para modelar sistemas sociales, sistemas económicos, sistemas biológicos; etc. En muchos casos los SDA pueden resolverse eficientemente por medio de métodos numéricos standard utilizados para la resolución de Sistemas Diferenciales Ordinarios (SDO). Este enfoque fue introducido por Gear [6], y utilizado por diferentes autores, por ejemplo en [7] y [8]. Sin embargo, los SDA suelen tener algunas propiedades que provocan que estos métodos numéricos fracasen. En [7] y [9], por ejemplo, se presentan algunos resultados acerca de las causas de tales dificultades para el caso particular de una clase de SDA lineales. Las técnicas utilizadas en estos trabajos son de naturaleza algebraica, y no brindan una información completa acerca de la existencia y unicidad de soluciones. Otro enfoque diferente surge al considerar un SDA como un conjunto de ecuaciones diferenciales sobre una variedad. Esta aproximación geométrica permite desarrollar una teoría de existencia y unicidad de soluciones que da lugar a conocer nuevas propiedades de los SDA, y a analizar cuales son las causas por la que los métodos numéricos fallan algunas veces, [10].
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/2558
https://doi.org/10.35537/10915/2558
url http://sedici.unlp.edu.ar/handle/10915/2558
https://doi.org/10.35537/10915/2558
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260043814141952
score 13.13397