Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales

Autores
González, Cecilia Zulema
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Etchechoury, María del Rosario
Descripción
Las Ecuaciones Diferenciales Algebraicas Cuasilineales (EDACs) aparecen en diversos campos, muchos de ellos vinculados a la teoría de circuitos eléctricos. Uno de los objetivos de la tesis es aplicar resultados de la teoría de EDACs al análisis de los puntos de equilibrio singulares en distintas clases de circuitos eléctricos no lineales que se modelan con este tipo de ecuaciones. En primer lugar, presentamos las definiciones básicas necesarias que se vinculan con el desarrollo posterior del trabajo, para esto, detallamos la clasificación de las EDACs en regulares y singulares y el concepto de índice de una EDAC. Además, presentamos los teoremas ya conocidos que permiten analizar la estabilidad de los equilibrios mediante el espectro de la matriz pencil. Describimos también el algoritmo de desingularización que, dada una EDA del tipo, permite hallar una EDA cuasilineal equivalente, de rango localmente constante, restringida a una subvariedad de menor dimensión donde se puede garantizar existencia de solución. La restricción del sistema hace posible estudiar el comportamiento de los puntos de equilibrio asintóticamente estables en una subvariedad de menor dimensión y analizar su comportamiento. Como un aporte original, usamos los teoremas sobre estabilidad para encontrar las condiciones que garanticen la estabilidad de los puntos de equilibrio regulares en las EDACs que modelizan dos clases de circuitos eléctricos no lineales: (i) los circuitos RLC, que consisten de una resistencia, un capacitor y un inductor en paralelo; (ii) los circuitos LC con diodo-túnel, donde la capacidad depende de uno de los voltajes, la inductancia de la corriente y la relación entre el otro voltaje y la corriente en el modelo diodo-túnel está dada por una función no lineal. Luego, utilizamos el algoritmo de desingularización para establecer una clasificación sobre los distintos tipos de equilibrio en estos modelos. Consideramos la clasificación de las EDACs singulares en estacionarias y no estacionarias y en el primer caso presentamos un ejemplo de aplicación en el método continuo de Newton. En el caso no estacionario de índice 0, damos algunos resultados preliminares ya conocidos sobre estabilidad, restringiendo la dinámica a una variedad central. Como aporte original de la tesis, establecemos resultados teóricos que garantizan la existencia de una subvariedad de dimensión 1 asociada a una solución de cruce de una EDAC singular no estacionaria por un equilibrio singular. Aplicamos los resultados hallados a la búsqueda de trayectorias de cruce por equilibrios singulares en los casos de EDACs singulares que modelizan dos clases de circuitos eléctricos no lineales: RLC y con diodo-túnel. En ambos casos se estudia la estabilidad y se prueba la existencia de una solución de cruce por los equilibrios singulares.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
ecuaciones
Ecuaciones Diferenciales Algebraicas Cuasilineales (EDAC)
estabilidad
álgebra
soluciones de cruce
redes eléctricas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/60314

id SEDICI_5c008438cd2befbaa98c89cf97165dbf
oai_identifier_str oai:sedici.unlp.edu.ar:10915/60314
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no linealesGonzález, Cecilia ZulemaCiencias ExactasMatemáticaecuacionesEcuaciones Diferenciales Algebraicas Cuasilineales (EDAC)estabilidadálgebrasoluciones de cruceredes eléctricasLas Ecuaciones Diferenciales Algebraicas Cuasilineales (EDACs) aparecen en diversos campos, muchos de ellos vinculados a la teoría de circuitos eléctricos. Uno de los objetivos de la tesis es aplicar resultados de la teoría de EDACs al análisis de los puntos de equilibrio singulares en distintas clases de circuitos eléctricos no lineales que se modelan con este tipo de ecuaciones. En primer lugar, presentamos las definiciones básicas necesarias que se vinculan con el desarrollo posterior del trabajo, para esto, detallamos la clasificación de las EDACs en regulares y singulares y el concepto de índice de una EDAC. Además, presentamos los teoremas ya conocidos que permiten analizar la estabilidad de los equilibrios mediante el espectro de la matriz pencil. Describimos también el algoritmo de desingularización que, dada una EDA del tipo, permite hallar una EDA cuasilineal equivalente, de rango localmente constante, restringida a una subvariedad de menor dimensión donde se puede garantizar existencia de solución. La restricción del sistema hace posible estudiar el comportamiento de los puntos de equilibrio asintóticamente estables en una subvariedad de menor dimensión y analizar su comportamiento. Como un aporte original, usamos los teoremas sobre estabilidad para encontrar las condiciones que garanticen la estabilidad de los puntos de equilibrio regulares en las EDACs que modelizan dos clases de circuitos eléctricos no lineales: (i) los circuitos RLC, que consisten de una resistencia, un capacitor y un inductor en paralelo; (ii) los circuitos LC con diodo-túnel, donde la capacidad depende de uno de los voltajes, la inductancia de la corriente y la relación entre el otro voltaje y la corriente en el modelo diodo-túnel está dada por una función no lineal. Luego, utilizamos el algoritmo de desingularización para establecer una clasificación sobre los distintos tipos de equilibrio en estos modelos. Consideramos la clasificación de las EDACs singulares en estacionarias y no estacionarias y en el primer caso presentamos un ejemplo de aplicación en el método continuo de Newton. En el caso no estacionario de índice 0, damos algunos resultados preliminares ya conocidos sobre estabilidad, restringiendo la dinámica a una variedad central. Como aporte original de la tesis, establecemos resultados teóricos que garantizan la existencia de una subvariedad de dimensión 1 asociada a una solución de cruce de una EDAC singular no estacionaria por un equilibrio singular. Aplicamos los resultados hallados a la búsqueda de trayectorias de cruce por equilibrios singulares en los casos de EDACs singulares que modelizan dos clases de circuitos eléctricos no lineales: RLC y con diodo-túnel. En ambos casos se estudia la estabilidad y se prueba la existencia de una solución de cruce por los equilibrios singulares.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasEtchechoury, María del Rosario2017-05-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/60314https://doi.org/10.35537/10915/60314spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:39:52Zoai:sedici.unlp.edu.ar:10915/60314Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:39:53.597SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
title Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
spellingShingle Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
González, Cecilia Zulema
Ciencias Exactas
Matemática
ecuaciones
Ecuaciones Diferenciales Algebraicas Cuasilineales (EDAC)
estabilidad
álgebra
soluciones de cruce
redes eléctricas
title_short Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
title_full Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
title_fullStr Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
title_full_unstemmed Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
title_sort Equilibrios singulares en ecuaciones diferenciales algebraicas: aplicación a redes eléctricas no lineales
dc.creator.none.fl_str_mv González, Cecilia Zulema
author González, Cecilia Zulema
author_facet González, Cecilia Zulema
author_role author
dc.contributor.none.fl_str_mv Etchechoury, María del Rosario
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
ecuaciones
Ecuaciones Diferenciales Algebraicas Cuasilineales (EDAC)
estabilidad
álgebra
soluciones de cruce
redes eléctricas
topic Ciencias Exactas
Matemática
ecuaciones
Ecuaciones Diferenciales Algebraicas Cuasilineales (EDAC)
estabilidad
álgebra
soluciones de cruce
redes eléctricas
dc.description.none.fl_txt_mv Las Ecuaciones Diferenciales Algebraicas Cuasilineales (EDACs) aparecen en diversos campos, muchos de ellos vinculados a la teoría de circuitos eléctricos. Uno de los objetivos de la tesis es aplicar resultados de la teoría de EDACs al análisis de los puntos de equilibrio singulares en distintas clases de circuitos eléctricos no lineales que se modelan con este tipo de ecuaciones. En primer lugar, presentamos las definiciones básicas necesarias que se vinculan con el desarrollo posterior del trabajo, para esto, detallamos la clasificación de las EDACs en regulares y singulares y el concepto de índice de una EDAC. Además, presentamos los teoremas ya conocidos que permiten analizar la estabilidad de los equilibrios mediante el espectro de la matriz pencil. Describimos también el algoritmo de desingularización que, dada una EDA del tipo, permite hallar una EDA cuasilineal equivalente, de rango localmente constante, restringida a una subvariedad de menor dimensión donde se puede garantizar existencia de solución. La restricción del sistema hace posible estudiar el comportamiento de los puntos de equilibrio asintóticamente estables en una subvariedad de menor dimensión y analizar su comportamiento. Como un aporte original, usamos los teoremas sobre estabilidad para encontrar las condiciones que garanticen la estabilidad de los puntos de equilibrio regulares en las EDACs que modelizan dos clases de circuitos eléctricos no lineales: (i) los circuitos RLC, que consisten de una resistencia, un capacitor y un inductor en paralelo; (ii) los circuitos LC con diodo-túnel, donde la capacidad depende de uno de los voltajes, la inductancia de la corriente y la relación entre el otro voltaje y la corriente en el modelo diodo-túnel está dada por una función no lineal. Luego, utilizamos el algoritmo de desingularización para establecer una clasificación sobre los distintos tipos de equilibrio en estos modelos. Consideramos la clasificación de las EDACs singulares en estacionarias y no estacionarias y en el primer caso presentamos un ejemplo de aplicación en el método continuo de Newton. En el caso no estacionario de índice 0, damos algunos resultados preliminares ya conocidos sobre estabilidad, restringiendo la dinámica a una variedad central. Como aporte original de la tesis, establecemos resultados teóricos que garantizan la existencia de una subvariedad de dimensión 1 asociada a una solución de cruce de una EDAC singular no estacionaria por un equilibrio singular. Aplicamos los resultados hallados a la búsqueda de trayectorias de cruce por equilibrios singulares en los casos de EDACs singulares que modelizan dos clases de circuitos eléctricos no lineales: RLC y con diodo-túnel. En ambos casos se estudia la estabilidad y se prueba la existencia de una solución de cruce por los equilibrios singulares.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description Las Ecuaciones Diferenciales Algebraicas Cuasilineales (EDACs) aparecen en diversos campos, muchos de ellos vinculados a la teoría de circuitos eléctricos. Uno de los objetivos de la tesis es aplicar resultados de la teoría de EDACs al análisis de los puntos de equilibrio singulares en distintas clases de circuitos eléctricos no lineales que se modelan con este tipo de ecuaciones. En primer lugar, presentamos las definiciones básicas necesarias que se vinculan con el desarrollo posterior del trabajo, para esto, detallamos la clasificación de las EDACs en regulares y singulares y el concepto de índice de una EDAC. Además, presentamos los teoremas ya conocidos que permiten analizar la estabilidad de los equilibrios mediante el espectro de la matriz pencil. Describimos también el algoritmo de desingularización que, dada una EDA del tipo, permite hallar una EDA cuasilineal equivalente, de rango localmente constante, restringida a una subvariedad de menor dimensión donde se puede garantizar existencia de solución. La restricción del sistema hace posible estudiar el comportamiento de los puntos de equilibrio asintóticamente estables en una subvariedad de menor dimensión y analizar su comportamiento. Como un aporte original, usamos los teoremas sobre estabilidad para encontrar las condiciones que garanticen la estabilidad de los puntos de equilibrio regulares en las EDACs que modelizan dos clases de circuitos eléctricos no lineales: (i) los circuitos RLC, que consisten de una resistencia, un capacitor y un inductor en paralelo; (ii) los circuitos LC con diodo-túnel, donde la capacidad depende de uno de los voltajes, la inductancia de la corriente y la relación entre el otro voltaje y la corriente en el modelo diodo-túnel está dada por una función no lineal. Luego, utilizamos el algoritmo de desingularización para establecer una clasificación sobre los distintos tipos de equilibrio en estos modelos. Consideramos la clasificación de las EDACs singulares en estacionarias y no estacionarias y en el primer caso presentamos un ejemplo de aplicación en el método continuo de Newton. En el caso no estacionario de índice 0, damos algunos resultados preliminares ya conocidos sobre estabilidad, restringiendo la dinámica a una variedad central. Como aporte original de la tesis, establecemos resultados teóricos que garantizan la existencia de una subvariedad de dimensión 1 asociada a una solución de cruce de una EDAC singular no estacionaria por un equilibrio singular. Aplicamos los resultados hallados a la búsqueda de trayectorias de cruce por equilibrios singulares en los casos de EDACs singulares que modelizan dos clases de circuitos eléctricos no lineales: RLC y con diodo-túnel. En ambos casos se estudia la estabilidad y se prueba la existencia de una solución de cruce por los equilibrios singulares.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-12
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/60314
https://doi.org/10.35537/10915/60314
url http://sedici.unlp.edu.ar/handle/10915/60314
https://doi.org/10.35537/10915/60314
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260263504445440
score 13.13397