Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction
- Autores
- Méndez Garabetti, Miguel; BIanchini, Germán; Tardivo, María Laura; Caymes Scutari, Paola; Gil Costa, Graciela Verónica
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.
Facultad de Informática - Materia
-
Ciencias Informáticas
hybrid metaheuristics
differential evolution
evolutionary algorithms
fire prediction
uncertainty reduction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/59977
Ver los metadatos del registro completo
id |
SEDICI_df26cbe6b77b5ec01a4fe12e8f621cbb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/59977 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread PredictionMéndez Garabetti, MiguelBIanchini, GermánTardivo, María LauraCaymes Scutari, PaolaGil Costa, Graciela VerónicaCiencias Informáticashybrid metaheuristicsdifferential evolutionevolutionary algorithmsfire predictionuncertainty reductionFire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.Facultad de Informática2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf12-19http://sedici.unlp.edu.ar/handle/10915/59977enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/2017/05/JCST-44-Paper-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:10:28Zoai:sedici.unlp.edu.ar:10915/59977Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:10:29.046SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
title |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
spellingShingle |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction Méndez Garabetti, Miguel Ciencias Informáticas hybrid metaheuristics differential evolution evolutionary algorithms fire prediction uncertainty reduction |
title_short |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
title_full |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
title_fullStr |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
title_full_unstemmed |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
title_sort |
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction |
dc.creator.none.fl_str_mv |
Méndez Garabetti, Miguel BIanchini, Germán Tardivo, María Laura Caymes Scutari, Paola Gil Costa, Graciela Verónica |
author |
Méndez Garabetti, Miguel |
author_facet |
Méndez Garabetti, Miguel BIanchini, Germán Tardivo, María Laura Caymes Scutari, Paola Gil Costa, Graciela Verónica |
author_role |
author |
author2 |
BIanchini, Germán Tardivo, María Laura Caymes Scutari, Paola Gil Costa, Graciela Verónica |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas hybrid metaheuristics differential evolution evolutionary algorithms fire prediction uncertainty reduction |
topic |
Ciencias Informáticas hybrid metaheuristics differential evolution evolutionary algorithms fire prediction uncertainty reduction |
dc.description.none.fl_txt_mv |
Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature. Facultad de Informática |
description |
Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/59977 |
url |
http://sedici.unlp.edu.ar/handle/10915/59977 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/2017/05/JCST-44-Paper-2.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf 12-19 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904010132029440 |
score |
12.993085 |