Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction
- Autores
- Mendez Garabetti, Miguel; Bianchini, German; Tardivo, María Laura; Caymes Scutari, Paola Guadalupe; Gil Costa, Graciela Verónica
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.
Fil: Mendez Garabetti, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina
Fil: Bianchini, German. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina
Fil: Tardivo, María Laura. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Caymes Scutari, Paola Guadalupe. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
HYBRID METAHEURISTICS
DIFFERENTIAL EVOLUTION
EVOLUTIONARY ALGORITHMS
FIRE PREDICTION
UNCERTAINTY REDUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69844
Ver los metadatos del registro completo
id |
CONICETDig_d9bcecd90aec27b877c30f00d42c3a69 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69844 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid-parallel uncertainty reduction method applied to forest fire spread predictionMendez Garabetti, MiguelBianchini, GermanTardivo, María LauraCaymes Scutari, Paola GuadalupeGil Costa, Graciela VerónicaHYBRID METAHEURISTICSDIFFERENTIAL EVOLUTIONEVOLUTIONARY ALGORITHMSFIRE PREDICTIONUNCERTAINTY REDUCTIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.Fil: Mendez Garabetti, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; ArgentinaFil: Bianchini, German. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; ArgentinaFil: Tardivo, María Laura. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Caymes Scutari, Paola Guadalupe. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; ArgentinaFil: Gil Costa, Graciela Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIbero-American Science and Technology Education Consortium2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69844Mendez Garabetti, Miguel; Bianchini, German; Tardivo, María Laura; Caymes Scutari, Paola Guadalupe; Gil Costa, Graciela Verónica; Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction; Ibero-American Science and Technology Education Consortium; Journal of Computer Science & Technology; 17; 1; 4-2017; 12-191666-6046CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/59977info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:23Zoai:ri.conicet.gov.ar:11336/69844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:23.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
title |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
spellingShingle |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction Mendez Garabetti, Miguel HYBRID METAHEURISTICS DIFFERENTIAL EVOLUTION EVOLUTIONARY ALGORITHMS FIRE PREDICTION UNCERTAINTY REDUCTION |
title_short |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
title_full |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
title_fullStr |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
title_full_unstemmed |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
title_sort |
Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction |
dc.creator.none.fl_str_mv |
Mendez Garabetti, Miguel Bianchini, German Tardivo, María Laura Caymes Scutari, Paola Guadalupe Gil Costa, Graciela Verónica |
author |
Mendez Garabetti, Miguel |
author_facet |
Mendez Garabetti, Miguel Bianchini, German Tardivo, María Laura Caymes Scutari, Paola Guadalupe Gil Costa, Graciela Verónica |
author_role |
author |
author2 |
Bianchini, German Tardivo, María Laura Caymes Scutari, Paola Guadalupe Gil Costa, Graciela Verónica |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
HYBRID METAHEURISTICS DIFFERENTIAL EVOLUTION EVOLUTIONARY ALGORITHMS FIRE PREDICTION UNCERTAINTY REDUCTION |
topic |
HYBRID METAHEURISTICS DIFFERENTIAL EVOLUTION EVOLUTIONARY ALGORITHMS FIRE PREDICTION UNCERTAINTY REDUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature. Fil: Mendez Garabetti, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina Fil: Bianchini, German. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina Fil: Tardivo, María Laura. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Caymes Scutari, Paola Guadalupe. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio de Investigación en Cómputo Paralelo/Distribuido; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina Fil: Gil Costa, Graciela Verónica. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físico-Químicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69844 Mendez Garabetti, Miguel; Bianchini, German; Tardivo, María Laura; Caymes Scutari, Paola Guadalupe; Gil Costa, Graciela Verónica; Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction; Ibero-American Science and Technology Education Consortium; Journal of Computer Science & Technology; 17; 1; 4-2017; 12-19 1666-6046 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69844 |
identifier_str_mv |
Mendez Garabetti, Miguel; Bianchini, German; Tardivo, María Laura; Caymes Scutari, Paola Guadalupe; Gil Costa, Graciela Verónica; Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction; Ibero-American Science and Technology Education Consortium; Journal of Computer Science & Technology; 17; 1; 4-2017; 12-19 1666-6046 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/59977 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Ibero-American Science and Technology Education Consortium |
publisher.none.fl_str_mv |
Ibero-American Science and Technology Education Consortium |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614228337491968 |
score |
13.069144 |