A mutual learning framework for pruned and quantized networks

Autores
Li, Xiaohai; Chen, Yigiang; Wang, Jindong
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Model compression is an important topic in deep learning research. It can be mainly divided into two directions: model pruning and model quantization. However, both methods will more or less affect the original accuracy of the model. In this paper, we propose a mutual learning framework for pruned and quantized networks. We regard the pruned network and the quantized network as two sets of features that are not parallel. The purpose of our mutual learning framework is to better integrate the two sets of features and achieve complementary advantages, which we call feature augmentation. To verify the effectiveness of our framework, we select a pairwise combination of 3 state-of-the-art pruning algorithms and 3 state-of-theart quantization algorithms. Extensive experiments on CIFAR-10, CIFAR-100 and Tiny-imagenet show the benefits of our framework: through the mutual learning of the two networks, we obtain a pruned network and a quantization network with higher accuracy than traditional approaches.
La compresión de modelos es un tema importante en la investigación del aprendizaje profundo. Se puede dividir principalmente en dos direcciones: poda de modelos y cuantización de modelos. Sin embargo, ambos métodos afectarán más o menos la precisión original del modelo. En este artículo, proponemos un marco de aprendizaje mutuo para redes podadas y cuantificadas. Consideramos la red podada y la red quantized como dos conjuntos de características que no son paralelas. El propósito de nuestro marco de aprendizaje mutuo es integrar mejor los dos conjuntos de funciones y lograr ventajas complementarias, lo que llamamos aumento de funciones. Para verificar la efectividad de nuestro marco, seleccionamos una combinación por pares de 3 algoritmos de poda de última generación y 3 algoritmos de cuantificación de última generación. Extensos experimentos en CIFAR- 10, CIFAR-100 y Tiny-imagenet muestran los beneficios de nuestro marco: a través del aprendizaje mutuo de las dos redes, obtenemos una red pruned y una red de cuantificación con mayor precisión que los enfoques tradicionales.
Facultad de Informática
Materia
Ciencias Informáticas
Model compression
Network pruning
Quantization
Mutual learning
Compresión de modelo
Poda de red
Cuantificación
Aprendizaje mutuo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/152119

id SEDICI_dd04481377a15bbaeb3ef4a8f35b1a77
oai_identifier_str oai:sedici.unlp.edu.ar:10915/152119
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A mutual learning framework for pruned and quantized networksUn marco de aprendizaje mutuo para redes podadas y cuantificadasLi, XiaohaiChen, YigiangWang, JindongCiencias InformáticasModel compressionNetwork pruningQuantizationMutual learningCompresión de modeloPoda de redCuantificaciónAprendizaje mutuoModel compression is an important topic in deep learning research. It can be mainly divided into two directions: model pruning and model quantization. However, both methods will more or less affect the original accuracy of the model. In this paper, we propose a mutual learning framework for pruned and quantized networks. We regard the pruned network and the quantized network as two sets of features that are not parallel. The purpose of our mutual learning framework is to better integrate the two sets of features and achieve complementary advantages, which we call feature augmentation. To verify the effectiveness of our framework, we select a pairwise combination of 3 state-of-the-art pruning algorithms and 3 state-of-theart quantization algorithms. Extensive experiments on CIFAR-10, CIFAR-100 and Tiny-imagenet show the benefits of our framework: through the mutual learning of the two networks, we obtain a pruned network and a quantization network with higher accuracy than traditional approaches.La compresión de modelos es un tema importante en la investigación del aprendizaje profundo. Se puede dividir principalmente en dos direcciones: poda de modelos y cuantización de modelos. Sin embargo, ambos métodos afectarán más o menos la precisión original del modelo. En este artículo, proponemos un marco de aprendizaje mutuo para redes podadas y cuantificadas. Consideramos la red podada y la red quantized como dos conjuntos de características que no son paralelas. El propósito de nuestro marco de aprendizaje mutuo es integrar mejor los dos conjuntos de funciones y lograr ventajas complementarias, lo que llamamos aumento de funciones. Para verificar la efectividad de nuestro marco, seleccionamos una combinación por pares de 3 algoritmos de poda de última generación y 3 algoritmos de cuantificación de última generación. Extensos experimentos en CIFAR- 10, CIFAR-100 y Tiny-imagenet muestran los beneficios de nuestro marco: a través del aprendizaje mutuo de las dos redes, obtenemos una red pruned y una red de cuantificación con mayor precisión que los enfoques tradicionales.Facultad de Informática2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/152119enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.23.e01info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:16Zoai:sedici.unlp.edu.ar:10915/152119Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:16.529SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A mutual learning framework for pruned and quantized networks
Un marco de aprendizaje mutuo para redes podadas y cuantificadas
title A mutual learning framework for pruned and quantized networks
spellingShingle A mutual learning framework for pruned and quantized networks
Li, Xiaohai
Ciencias Informáticas
Model compression
Network pruning
Quantization
Mutual learning
Compresión de modelo
Poda de red
Cuantificación
Aprendizaje mutuo
title_short A mutual learning framework for pruned and quantized networks
title_full A mutual learning framework for pruned and quantized networks
title_fullStr A mutual learning framework for pruned and quantized networks
title_full_unstemmed A mutual learning framework for pruned and quantized networks
title_sort A mutual learning framework for pruned and quantized networks
dc.creator.none.fl_str_mv Li, Xiaohai
Chen, Yigiang
Wang, Jindong
author Li, Xiaohai
author_facet Li, Xiaohai
Chen, Yigiang
Wang, Jindong
author_role author
author2 Chen, Yigiang
Wang, Jindong
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Model compression
Network pruning
Quantization
Mutual learning
Compresión de modelo
Poda de red
Cuantificación
Aprendizaje mutuo
topic Ciencias Informáticas
Model compression
Network pruning
Quantization
Mutual learning
Compresión de modelo
Poda de red
Cuantificación
Aprendizaje mutuo
dc.description.none.fl_txt_mv Model compression is an important topic in deep learning research. It can be mainly divided into two directions: model pruning and model quantization. However, both methods will more or less affect the original accuracy of the model. In this paper, we propose a mutual learning framework for pruned and quantized networks. We regard the pruned network and the quantized network as two sets of features that are not parallel. The purpose of our mutual learning framework is to better integrate the two sets of features and achieve complementary advantages, which we call feature augmentation. To verify the effectiveness of our framework, we select a pairwise combination of 3 state-of-the-art pruning algorithms and 3 state-of-theart quantization algorithms. Extensive experiments on CIFAR-10, CIFAR-100 and Tiny-imagenet show the benefits of our framework: through the mutual learning of the two networks, we obtain a pruned network and a quantization network with higher accuracy than traditional approaches.
La compresión de modelos es un tema importante en la investigación del aprendizaje profundo. Se puede dividir principalmente en dos direcciones: poda de modelos y cuantización de modelos. Sin embargo, ambos métodos afectarán más o menos la precisión original del modelo. En este artículo, proponemos un marco de aprendizaje mutuo para redes podadas y cuantificadas. Consideramos la red podada y la red quantized como dos conjuntos de características que no son paralelas. El propósito de nuestro marco de aprendizaje mutuo es integrar mejor los dos conjuntos de funciones y lograr ventajas complementarias, lo que llamamos aumento de funciones. Para verificar la efectividad de nuestro marco, seleccionamos una combinación por pares de 3 algoritmos de poda de última generación y 3 algoritmos de cuantificación de última generación. Extensos experimentos en CIFAR- 10, CIFAR-100 y Tiny-imagenet muestran los beneficios de nuestro marco: a través del aprendizaje mutuo de las dos redes, obtenemos una red pruned y una red de cuantificación con mayor precisión que los enfoques tradicionales.
Facultad de Informática
description Model compression is an important topic in deep learning research. It can be mainly divided into two directions: model pruning and model quantization. However, both methods will more or less affect the original accuracy of the model. In this paper, we propose a mutual learning framework for pruned and quantized networks. We regard the pruned network and the quantized network as two sets of features that are not parallel. The purpose of our mutual learning framework is to better integrate the two sets of features and achieve complementary advantages, which we call feature augmentation. To verify the effectiveness of our framework, we select a pairwise combination of 3 state-of-the-art pruning algorithms and 3 state-of-theart quantization algorithms. Extensive experiments on CIFAR-10, CIFAR-100 and Tiny-imagenet show the benefits of our framework: through the mutual learning of the two networks, we obtain a pruned network and a quantization network with higher accuracy than traditional approaches.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/152119
url http://sedici.unlp.edu.ar/handle/10915/152119
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.23.e01
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616266744070144
score 13.070432