Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>

Autores
Castañeda, María Teresita; Villagarcía, Hernán; Hours, Roque Alberto; Mignone, Carlos Fernando
Año de publicación
2012
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La enzima Fenilalanina amonio liasa (PAL, EC 4.3.1.5), cataliza la biotransformación de L- fenilalanina en ácido trans- cinámico y amonio. En las últimas décadas ha sido ampliamente estudiada por su potencial uso en el tratamiento de pacientes con fenilcetonuria (PKU). Se han reportados sucesivos estudios acerca de su aislamiento en plantas y levaduras. Entre estas últimas, se destacan las del género Rhodotorula. Rhodosporidium toruloides (IFO 0559), antiguamente denominada Rhodotorula glutinis, ha sido ampliamente estudiada por su capacidad de producción de PAL en medios de composición simple, conteniendo fenilalanina como inductor. Si bien se han ensayado diferentes medios con composición nutricional variable a fin de determinar su incidencia en la expresión de la PAL, existen escasos registros acerca de la influencia de la fuente de carbono y energía (FCE), empleada para el crecimiento de la cepa, en la producción de la enzima. Con la finalidad de determinar la FCE mas apta para ser empleada en la producción de PAL, se utilizaron diversas fuentes de carbono, a saber: sacarosa, glucosa, fructosa, galactosa, maltosa, celobiosa, rafinosa, xilosa, etanol, glicerol y sorbitol, a razón de 0,165 Cmol/lt de cultivo, en un medio basal sintético para crecimiento de levaduras. A este medio se lo suplementó con L-fenilalanina (0,5 gr/lt) y L-isoleucina (5gr/lt). Adicionalmente, se ensayó una melaza obtenida como residuo de la extracción de aceite de soja, con un 70% de azúcares simples de composición variable. Los medios a ensayar, cada uno por duplicado, se inocularon con cultivos de Rhodosporidium toruloides crecidos en pico de flauta a razón de 1,5 x 107 UFC/ml, en cultivo batch. La incubación se llevó a cabo en condiciones aeróbicas en shaker a 200 rpm y 30°C. La actividad de PAL fue medida espectrofotométricamente monitoreando la producción de ácido cinámico a 290 nm, mediante método modificado de Yamada et. al (1981). La mezcla de reacción contiene: 25 l de biomasa (10x), 25 mM de L- fenilalanina, 25 mM de Tris-HCl buffer (pH=8,5) y 0,005% de CPC. La reacción se llevó a cabo a 30°C por 10 minutos. Una unidad de PAL se define como la cantidad de enzima que cataliza la formación de 1 mol de ácido trans-cinámico por minuto, por ml de cultivo. La actividad específica se expresó en términos de unidades enzimáticas por mg de células secas. En los ensayos realizados se pudo observar que tanto la glucosa como la sacarosa y la fructosa lograron un vertiginoso crecimiento de la cepa, seguido por la rafinosa y la melaza. Con menores tasas de crecimiento se encuentra el etanol, glicerol, sorbitol, maltosa y celobiosa y con crecimientos muy lentos, la xilosa y la galactosa. En cuanto a la expresión de PAL, se alcanzaron mayores actividades empleando maltosa como FCE (Amax=120 mU/mg) y celobiosa (Amax=116 mU/mg), seguidos por el etanol (Amax= 99 mU/mg), sorbitol (Amax= 95 mU/mg), melaza (Amax= 80 mU/mg), glicerol (Amax= 75 mU/mg), rafinosa (Amax= 68 mU/mg), galactosa (Amax= 38 mU/mg), mientras que con sacarosa, fructosa y glucosa las actividades máximas rondaron entre 25-30 mU/mg. En el caso de la xilosa, se obtuvo una actividad PAL muy pobre (A max=10 mU/mg). En todos los casos los picos de actividad máxima se hallaron entre las 10 y 25 horas de cultivo (entrando en la fase exponencial), variando dentro de dicho período, dependiendo de la fuente de carbono. A partir de estos resultados se puede concluir que las fuentes de carbono y energías más aptas a fin de optimizar la producción de PAL resultaron ser los disacáridos de glucosa (maltosa y celobiosa), aun cuando la velocidad de crecimiento en éstos fue menor. Los alcoholes y polioles tuvieron una buena performance, logrando actividades máximas altas, con una tasa de crecimiento similar. En el caso de la melaza (que incluye en su composición principalmente estaquiosa, sacarosa y rafinosa) y la rafinosa por si misma, las actividades alcanzadas fueron buenas a una tasa de crecimiento mayor que en el caso anterior. Finalmente para la sacarosa y los monosacáridos, si bien lograron tasas de crecimiento elevadas, las actividades obtenidas fueron muy bajas, no siendo aptas para su empleo en cultivo batch. La xilosa por su parte no mostró aptitud para ser empleada como FCE, en ninguno de los aspectos requeridos.
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI)
Materia
Ciencias Exactas
Química
Fenilalanina
fenilalanina amonio liasa
fenilcetonuria
Rhodosporidium toruloides
biotransformación
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/47902

id SEDICI_dcf42492bc692ba64a72e235cc472a09
oai_identifier_str oai:sedici.unlp.edu.ar:10915/47902
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>Castañeda, María TeresitaVillagarcía, HernánHours, Roque AlbertoMignone, Carlos FernandoCiencias ExactasQuímicaFenilalaninafenilalanina amonio liasafenilcetonuriaRhodosporidium toruloidesbiotransformaciónLa enzima Fenilalanina amonio liasa (PAL, EC 4.3.1.5), cataliza la biotransformación de L- fenilalanina en ácido trans- cinámico y amonio. En las últimas décadas ha sido ampliamente estudiada por su potencial uso en el tratamiento de pacientes con fenilcetonuria (PKU). Se han reportados sucesivos estudios acerca de su aislamiento en plantas y levaduras. Entre estas últimas, se destacan las del género Rhodotorula. Rhodosporidium toruloides (IFO 0559), antiguamente denominada Rhodotorula glutinis, ha sido ampliamente estudiada por su capacidad de producción de PAL en medios de composición simple, conteniendo fenilalanina como inductor. Si bien se han ensayado diferentes medios con composición nutricional variable a fin de determinar su incidencia en la expresión de la PAL, existen escasos registros acerca de la influencia de la fuente de carbono y energía (FCE), empleada para el crecimiento de la cepa, en la producción de la enzima. Con la finalidad de determinar la FCE mas apta para ser empleada en la producción de PAL, se utilizaron diversas fuentes de carbono, a saber: sacarosa, glucosa, fructosa, galactosa, maltosa, celobiosa, rafinosa, xilosa, etanol, glicerol y sorbitol, a razón de 0,165 Cmol/lt de cultivo, en un medio basal sintético para crecimiento de levaduras. A este medio se lo suplementó con L-fenilalanina (0,5 gr/lt) y L-isoleucina (5gr/lt). Adicionalmente, se ensayó una melaza obtenida como residuo de la extracción de aceite de soja, con un 70% de azúcares simples de composición variable. Los medios a ensayar, cada uno por duplicado, se inocularon con cultivos de Rhodosporidium toruloides crecidos en pico de flauta a razón de 1,5 x 107 UFC/ml, en cultivo batch. La incubación se llevó a cabo en condiciones aeróbicas en shaker a 200 rpm y 30°C. La actividad de PAL fue medida espectrofotométricamente monitoreando la producción de ácido cinámico a 290 nm, mediante método modificado de Yamada et. al (1981). La mezcla de reacción contiene: 25 l de biomasa (10x), 25 mM de L- fenilalanina, 25 mM de Tris-HCl buffer (pH=8,5) y 0,005% de CPC. La reacción se llevó a cabo a 30°C por 10 minutos. Una unidad de PAL se define como la cantidad de enzima que cataliza la formación de 1 mol de ácido trans-cinámico por minuto, por ml de cultivo. La actividad específica se expresó en términos de unidades enzimáticas por mg de células secas. En los ensayos realizados se pudo observar que tanto la glucosa como la sacarosa y la fructosa lograron un vertiginoso crecimiento de la cepa, seguido por la rafinosa y la melaza. Con menores tasas de crecimiento se encuentra el etanol, glicerol, sorbitol, maltosa y celobiosa y con crecimientos muy lentos, la xilosa y la galactosa. En cuanto a la expresión de PAL, se alcanzaron mayores actividades empleando maltosa como FCE (Amax=120 mU/mg) y celobiosa (Amax=116 mU/mg), seguidos por el etanol (Amax= 99 mU/mg), sorbitol (Amax= 95 mU/mg), melaza (Amax= 80 mU/mg), glicerol (Amax= 75 mU/mg), rafinosa (Amax= 68 mU/mg), galactosa (Amax= 38 mU/mg), mientras que con sacarosa, fructosa y glucosa las actividades máximas rondaron entre 25-30 mU/mg. En el caso de la xilosa, se obtuvo una actividad PAL muy pobre (A max=10 mU/mg). En todos los casos los picos de actividad máxima se hallaron entre las 10 y 25 horas de cultivo (entrando en la fase exponencial), variando dentro de dicho período, dependiendo de la fuente de carbono. A partir de estos resultados se puede concluir que las fuentes de carbono y energías más aptas a fin de optimizar la producción de PAL resultaron ser los disacáridos de glucosa (maltosa y celobiosa), aun cuando la velocidad de crecimiento en éstos fue menor. Los alcoholes y polioles tuvieron una buena performance, logrando actividades máximas altas, con una tasa de crecimiento similar. En el caso de la melaza (que incluye en su composición principalmente estaquiosa, sacarosa y rafinosa) y la rafinosa por si misma, las actividades alcanzadas fueron buenas a una tasa de crecimiento mayor que en el caso anterior. Finalmente para la sacarosa y los monosacáridos, si bien lograron tasas de crecimiento elevadas, las actividades obtenidas fueron muy bajas, no siendo aptas para su empleo en cultivo batch. La xilosa por su parte no mostró aptitud para ser empleada como FCE, en ninguno de los aspectos requeridos.Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI)2012-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/47902spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-0845-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:35:49Zoai:sedici.unlp.edu.ar:10915/47902Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:35:50.325SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
title Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
spellingShingle Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
Castañeda, María Teresita
Ciencias Exactas
Química
Fenilalanina
fenilalanina amonio liasa
fenilcetonuria
Rhodosporidium toruloides
biotransformación
title_short Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
title_full Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
title_fullStr Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
title_full_unstemmed Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
title_sort Influencia de diferentes fuentes de carbono en la producción de fenilalanina amonio liasa (PAL) empleando <i>Rhodosporidium toruloides</i>
dc.creator.none.fl_str_mv Castañeda, María Teresita
Villagarcía, Hernán
Hours, Roque Alberto
Mignone, Carlos Fernando
author Castañeda, María Teresita
author_facet Castañeda, María Teresita
Villagarcía, Hernán
Hours, Roque Alberto
Mignone, Carlos Fernando
author_role author
author2 Villagarcía, Hernán
Hours, Roque Alberto
Mignone, Carlos Fernando
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Química
Fenilalanina
fenilalanina amonio liasa
fenilcetonuria
Rhodosporidium toruloides
biotransformación
topic Ciencias Exactas
Química
Fenilalanina
fenilalanina amonio liasa
fenilcetonuria
Rhodosporidium toruloides
biotransformación
dc.description.none.fl_txt_mv La enzima Fenilalanina amonio liasa (PAL, EC 4.3.1.5), cataliza la biotransformación de L- fenilalanina en ácido trans- cinámico y amonio. En las últimas décadas ha sido ampliamente estudiada por su potencial uso en el tratamiento de pacientes con fenilcetonuria (PKU). Se han reportados sucesivos estudios acerca de su aislamiento en plantas y levaduras. Entre estas últimas, se destacan las del género Rhodotorula. Rhodosporidium toruloides (IFO 0559), antiguamente denominada Rhodotorula glutinis, ha sido ampliamente estudiada por su capacidad de producción de PAL en medios de composición simple, conteniendo fenilalanina como inductor. Si bien se han ensayado diferentes medios con composición nutricional variable a fin de determinar su incidencia en la expresión de la PAL, existen escasos registros acerca de la influencia de la fuente de carbono y energía (FCE), empleada para el crecimiento de la cepa, en la producción de la enzima. Con la finalidad de determinar la FCE mas apta para ser empleada en la producción de PAL, se utilizaron diversas fuentes de carbono, a saber: sacarosa, glucosa, fructosa, galactosa, maltosa, celobiosa, rafinosa, xilosa, etanol, glicerol y sorbitol, a razón de 0,165 Cmol/lt de cultivo, en un medio basal sintético para crecimiento de levaduras. A este medio se lo suplementó con L-fenilalanina (0,5 gr/lt) y L-isoleucina (5gr/lt). Adicionalmente, se ensayó una melaza obtenida como residuo de la extracción de aceite de soja, con un 70% de azúcares simples de composición variable. Los medios a ensayar, cada uno por duplicado, se inocularon con cultivos de Rhodosporidium toruloides crecidos en pico de flauta a razón de 1,5 x 107 UFC/ml, en cultivo batch. La incubación se llevó a cabo en condiciones aeróbicas en shaker a 200 rpm y 30°C. La actividad de PAL fue medida espectrofotométricamente monitoreando la producción de ácido cinámico a 290 nm, mediante método modificado de Yamada et. al (1981). La mezcla de reacción contiene: 25 l de biomasa (10x), 25 mM de L- fenilalanina, 25 mM de Tris-HCl buffer (pH=8,5) y 0,005% de CPC. La reacción se llevó a cabo a 30°C por 10 minutos. Una unidad de PAL se define como la cantidad de enzima que cataliza la formación de 1 mol de ácido trans-cinámico por minuto, por ml de cultivo. La actividad específica se expresó en términos de unidades enzimáticas por mg de células secas. En los ensayos realizados se pudo observar que tanto la glucosa como la sacarosa y la fructosa lograron un vertiginoso crecimiento de la cepa, seguido por la rafinosa y la melaza. Con menores tasas de crecimiento se encuentra el etanol, glicerol, sorbitol, maltosa y celobiosa y con crecimientos muy lentos, la xilosa y la galactosa. En cuanto a la expresión de PAL, se alcanzaron mayores actividades empleando maltosa como FCE (Amax=120 mU/mg) y celobiosa (Amax=116 mU/mg), seguidos por el etanol (Amax= 99 mU/mg), sorbitol (Amax= 95 mU/mg), melaza (Amax= 80 mU/mg), glicerol (Amax= 75 mU/mg), rafinosa (Amax= 68 mU/mg), galactosa (Amax= 38 mU/mg), mientras que con sacarosa, fructosa y glucosa las actividades máximas rondaron entre 25-30 mU/mg. En el caso de la xilosa, se obtuvo una actividad PAL muy pobre (A max=10 mU/mg). En todos los casos los picos de actividad máxima se hallaron entre las 10 y 25 horas de cultivo (entrando en la fase exponencial), variando dentro de dicho período, dependiendo de la fuente de carbono. A partir de estos resultados se puede concluir que las fuentes de carbono y energías más aptas a fin de optimizar la producción de PAL resultaron ser los disacáridos de glucosa (maltosa y celobiosa), aun cuando la velocidad de crecimiento en éstos fue menor. Los alcoholes y polioles tuvieron una buena performance, logrando actividades máximas altas, con una tasa de crecimiento similar. En el caso de la melaza (que incluye en su composición principalmente estaquiosa, sacarosa y rafinosa) y la rafinosa por si misma, las actividades alcanzadas fueron buenas a una tasa de crecimiento mayor que en el caso anterior. Finalmente para la sacarosa y los monosacáridos, si bien lograron tasas de crecimiento elevadas, las actividades obtenidas fueron muy bajas, no siendo aptas para su empleo en cultivo batch. La xilosa por su parte no mostró aptitud para ser empleada como FCE, en ninguno de los aspectos requeridos.
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI)
description La enzima Fenilalanina amonio liasa (PAL, EC 4.3.1.5), cataliza la biotransformación de L- fenilalanina en ácido trans- cinámico y amonio. En las últimas décadas ha sido ampliamente estudiada por su potencial uso en el tratamiento de pacientes con fenilcetonuria (PKU). Se han reportados sucesivos estudios acerca de su aislamiento en plantas y levaduras. Entre estas últimas, se destacan las del género Rhodotorula. Rhodosporidium toruloides (IFO 0559), antiguamente denominada Rhodotorula glutinis, ha sido ampliamente estudiada por su capacidad de producción de PAL en medios de composición simple, conteniendo fenilalanina como inductor. Si bien se han ensayado diferentes medios con composición nutricional variable a fin de determinar su incidencia en la expresión de la PAL, existen escasos registros acerca de la influencia de la fuente de carbono y energía (FCE), empleada para el crecimiento de la cepa, en la producción de la enzima. Con la finalidad de determinar la FCE mas apta para ser empleada en la producción de PAL, se utilizaron diversas fuentes de carbono, a saber: sacarosa, glucosa, fructosa, galactosa, maltosa, celobiosa, rafinosa, xilosa, etanol, glicerol y sorbitol, a razón de 0,165 Cmol/lt de cultivo, en un medio basal sintético para crecimiento de levaduras. A este medio se lo suplementó con L-fenilalanina (0,5 gr/lt) y L-isoleucina (5gr/lt). Adicionalmente, se ensayó una melaza obtenida como residuo de la extracción de aceite de soja, con un 70% de azúcares simples de composición variable. Los medios a ensayar, cada uno por duplicado, se inocularon con cultivos de Rhodosporidium toruloides crecidos en pico de flauta a razón de 1,5 x 107 UFC/ml, en cultivo batch. La incubación se llevó a cabo en condiciones aeróbicas en shaker a 200 rpm y 30°C. La actividad de PAL fue medida espectrofotométricamente monitoreando la producción de ácido cinámico a 290 nm, mediante método modificado de Yamada et. al (1981). La mezcla de reacción contiene: 25 l de biomasa (10x), 25 mM de L- fenilalanina, 25 mM de Tris-HCl buffer (pH=8,5) y 0,005% de CPC. La reacción se llevó a cabo a 30°C por 10 minutos. Una unidad de PAL se define como la cantidad de enzima que cataliza la formación de 1 mol de ácido trans-cinámico por minuto, por ml de cultivo. La actividad específica se expresó en términos de unidades enzimáticas por mg de células secas. En los ensayos realizados se pudo observar que tanto la glucosa como la sacarosa y la fructosa lograron un vertiginoso crecimiento de la cepa, seguido por la rafinosa y la melaza. Con menores tasas de crecimiento se encuentra el etanol, glicerol, sorbitol, maltosa y celobiosa y con crecimientos muy lentos, la xilosa y la galactosa. En cuanto a la expresión de PAL, se alcanzaron mayores actividades empleando maltosa como FCE (Amax=120 mU/mg) y celobiosa (Amax=116 mU/mg), seguidos por el etanol (Amax= 99 mU/mg), sorbitol (Amax= 95 mU/mg), melaza (Amax= 80 mU/mg), glicerol (Amax= 75 mU/mg), rafinosa (Amax= 68 mU/mg), galactosa (Amax= 38 mU/mg), mientras que con sacarosa, fructosa y glucosa las actividades máximas rondaron entre 25-30 mU/mg. En el caso de la xilosa, se obtuvo una actividad PAL muy pobre (A max=10 mU/mg). En todos los casos los picos de actividad máxima se hallaron entre las 10 y 25 horas de cultivo (entrando en la fase exponencial), variando dentro de dicho período, dependiendo de la fuente de carbono. A partir de estos resultados se puede concluir que las fuentes de carbono y energías más aptas a fin de optimizar la producción de PAL resultaron ser los disacáridos de glucosa (maltosa y celobiosa), aun cuando la velocidad de crecimiento en éstos fue menor. Los alcoholes y polioles tuvieron una buena performance, logrando actividades máximas altas, con una tasa de crecimiento similar. En el caso de la melaza (que incluye en su composición principalmente estaquiosa, sacarosa y rafinosa) y la rafinosa por si misma, las actividades alcanzadas fueron buenas a una tasa de crecimiento mayor que en el caso anterior. Finalmente para la sacarosa y los monosacáridos, si bien lograron tasas de crecimiento elevadas, las actividades obtenidas fueron muy bajas, no siendo aptas para su empleo en cultivo batch. La xilosa por su parte no mostró aptitud para ser empleada como FCE, en ninguno de los aspectos requeridos.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/47902
url http://sedici.unlp.edu.ar/handle/10915/47902
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-0845-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260211948060672
score 13.13397