V-doped TiO2 photocatalysts and their application to pollutant degradation
- Autores
- Rossi, Lucía; Palacio, Magdalena; Villabrille, Paula Isabel; Rosso, Janina Alejandra
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- V-doped TiO2 materials (0.01, 0.05, 0.10, and 1.00 nominal atomic %) were synthesized by the sol-gel method and characterized by X-ray diffraction, Raman spectroscopy, UV–visible diffuse reflectance spectroscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Two vanadium precursors (vanadyl acetylacetonate and ammonium metavanadate) and three calcination temperatures (400, 500, and 600 °C, with and without air circulation) were assayed. The efficiency of the materials as photocatalysts was studied by the degradation of phenol with UV and visible lamps. The photocatalyst prepared from vanadium acetylacetonate, with a vanadium content of 0.01 nominal atomic %, calcination at 400 °C without air circulation (0.01VTi-400), showed the best performance, reaching 100% and 30% degradation of phenol (50 μM) by irradiation with UV lamps (3 h) and visible lamps (5 h), respectively. To evaluate the efficiency of this catalyst in the degradation of other structurally related compounds, two substituted phenols were selected: 4-chlorophenol and 4-nitrophenol. The 0.01VTi-400 photocatalyst showed to be applicable to the degradation of phenolic compounds when the substituent was an activating group or a weakly deactivating group (for electrophilic reactions). Additionally, the selectivity of 0.01VTi-400 for phenol degradation in the presence of Aldrich humic acid was tested: phenol degradation reached 68% (3 h, UV lamps). The performance of 0.01VTi-400 indicated that it is a promising material for further applications.
Centro de Investigación y Desarrollo en Ciencias Aplicadas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Química
Vanadyl acetylacetonate
Ammonium metavanadate
Phenol
4-chlorophenol
4-nitrophenol
Aldrich humic acid - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/141186
Ver los metadatos del registro completo
| id |
SEDICI_d9cbced267788b4c4ac8b98a5faaa40d |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/141186 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
V-doped TiO2 photocatalysts and their application to pollutant degradationRossi, LucíaPalacio, MagdalenaVillabrille, Paula IsabelRosso, Janina AlejandraQuímicaVanadyl acetylacetonateAmmonium metavanadatePhenol4-chlorophenol4-nitrophenolAldrich humic acidV-doped TiO2 materials (0.01, 0.05, 0.10, and 1.00 nominal atomic %) were synthesized by the sol-gel method and characterized by X-ray diffraction, Raman spectroscopy, UV–visible diffuse reflectance spectroscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Two vanadium precursors (vanadyl acetylacetonate and ammonium metavanadate) and three calcination temperatures (400, 500, and 600 °C, with and without air circulation) were assayed. The efficiency of the materials as photocatalysts was studied by the degradation of phenol with UV and visible lamps. The photocatalyst prepared from vanadium acetylacetonate, with a vanadium content of 0.01 nominal atomic %, calcination at 400 °C without air circulation (0.01VTi-400), showed the best performance, reaching 100% and 30% degradation of phenol (50 μM) by irradiation with UV lamps (3 h) and visible lamps (5 h), respectively. To evaluate the efficiency of this catalyst in the degradation of other structurally related compounds, two substituted phenols were selected: 4-chlorophenol and 4-nitrophenol. The 0.01VTi-400 photocatalyst showed to be applicable to the degradation of phenolic compounds when the substituent was an activating group or a weakly deactivating group (for electrophilic reactions). Additionally, the selectivity of 0.01VTi-400 for phenol degradation in the presence of Aldrich humic acid was tested: phenol degradation reached 68% (3 h, UV lamps). The performance of 0.01VTi-400 indicated that it is a promising material for further applications.Centro de Investigación y Desarrollo en Ciencias AplicadasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2021-01-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf24112-24123http://sedici.unlp.edu.ar/handle/10915/141186enginfo:eu-repo/semantics/altIdentifier/issn/1614-7499info:eu-repo/semantics/altIdentifier/issn/0944-1344info:eu-repo/semantics/altIdentifier/doi/10.1007/s11356-021-12339-5info:eu-repo/semantics/altIdentifier/pmid/33471310info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:31Zoai:sedici.unlp.edu.ar:10915/141186Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:32.28SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| title |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| spellingShingle |
V-doped TiO2 photocatalysts and their application to pollutant degradation Rossi, Lucía Química Vanadyl acetylacetonate Ammonium metavanadate Phenol 4-chlorophenol 4-nitrophenol Aldrich humic acid |
| title_short |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| title_full |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| title_fullStr |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| title_full_unstemmed |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| title_sort |
V-doped TiO2 photocatalysts and their application to pollutant degradation |
| dc.creator.none.fl_str_mv |
Rossi, Lucía Palacio, Magdalena Villabrille, Paula Isabel Rosso, Janina Alejandra |
| author |
Rossi, Lucía |
| author_facet |
Rossi, Lucía Palacio, Magdalena Villabrille, Paula Isabel Rosso, Janina Alejandra |
| author_role |
author |
| author2 |
Palacio, Magdalena Villabrille, Paula Isabel Rosso, Janina Alejandra |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Química Vanadyl acetylacetonate Ammonium metavanadate Phenol 4-chlorophenol 4-nitrophenol Aldrich humic acid |
| topic |
Química Vanadyl acetylacetonate Ammonium metavanadate Phenol 4-chlorophenol 4-nitrophenol Aldrich humic acid |
| dc.description.none.fl_txt_mv |
V-doped TiO2 materials (0.01, 0.05, 0.10, and 1.00 nominal atomic %) were synthesized by the sol-gel method and characterized by X-ray diffraction, Raman spectroscopy, UV–visible diffuse reflectance spectroscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Two vanadium precursors (vanadyl acetylacetonate and ammonium metavanadate) and three calcination temperatures (400, 500, and 600 °C, with and without air circulation) were assayed. The efficiency of the materials as photocatalysts was studied by the degradation of phenol with UV and visible lamps. The photocatalyst prepared from vanadium acetylacetonate, with a vanadium content of 0.01 nominal atomic %, calcination at 400 °C without air circulation (0.01VTi-400), showed the best performance, reaching 100% and 30% degradation of phenol (50 μM) by irradiation with UV lamps (3 h) and visible lamps (5 h), respectively. To evaluate the efficiency of this catalyst in the degradation of other structurally related compounds, two substituted phenols were selected: 4-chlorophenol and 4-nitrophenol. The 0.01VTi-400 photocatalyst showed to be applicable to the degradation of phenolic compounds when the substituent was an activating group or a weakly deactivating group (for electrophilic reactions). Additionally, the selectivity of 0.01VTi-400 for phenol degradation in the presence of Aldrich humic acid was tested: phenol degradation reached 68% (3 h, UV lamps). The performance of 0.01VTi-400 indicated that it is a promising material for further applications. Centro de Investigación y Desarrollo en Ciencias Aplicadas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
| description |
V-doped TiO2 materials (0.01, 0.05, 0.10, and 1.00 nominal atomic %) were synthesized by the sol-gel method and characterized by X-ray diffraction, Raman spectroscopy, UV–visible diffuse reflectance spectroscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Two vanadium precursors (vanadyl acetylacetonate and ammonium metavanadate) and three calcination temperatures (400, 500, and 600 °C, with and without air circulation) were assayed. The efficiency of the materials as photocatalysts was studied by the degradation of phenol with UV and visible lamps. The photocatalyst prepared from vanadium acetylacetonate, with a vanadium content of 0.01 nominal atomic %, calcination at 400 °C without air circulation (0.01VTi-400), showed the best performance, reaching 100% and 30% degradation of phenol (50 μM) by irradiation with UV lamps (3 h) and visible lamps (5 h), respectively. To evaluate the efficiency of this catalyst in the degradation of other structurally related compounds, two substituted phenols were selected: 4-chlorophenol and 4-nitrophenol. The 0.01VTi-400 photocatalyst showed to be applicable to the degradation of phenolic compounds when the substituent was an activating group or a weakly deactivating group (for electrophilic reactions). Additionally, the selectivity of 0.01VTi-400 for phenol degradation in the presence of Aldrich humic acid was tested: phenol degradation reached 68% (3 h, UV lamps). The performance of 0.01VTi-400 indicated that it is a promising material for further applications. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-01-20 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/141186 |
| url |
http://sedici.unlp.edu.ar/handle/10915/141186 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1614-7499 info:eu-repo/semantics/altIdentifier/issn/0944-1344 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11356-021-12339-5 info:eu-repo/semantics/altIdentifier/pmid/33471310 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 24112-24123 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783507633799168 |
| score |
12.982451 |