Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina
- Autores
- Fornasero, Laura Viviana; Del Papa, María Florencia; López, José Luis; Albicoro, Francisco Javier; Zabala, Juan Marcelo; Toniutti, María Antonieta; Pensiero, José Francisco; Lagares, Antonio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected - containing isolates with different abiotic-stress tolerances - showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126 - previously isolated from Leucaena leucocephala - that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera -rhizobia, sinorhizobia, and mesorhizobia- of full N
2 -fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N2 fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.
Instituto de Biotecnologia y Biologia Molecular - Materia
-
Biología
genetic diversity
Desmanthus paspalaceus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85037
Ver los metadatos del registro completo
| id |
SEDICI_d446db73891636c3e93f0cf39101c655 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85037 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, ArgentinaFornasero, Laura VivianaDel Papa, María FlorenciaLópez, José LuisAlbicoro, Francisco JavierZabala, Juan MarceloToniutti, María AntonietaPensiero, José FranciscoLagares, AntonioBiologíagenetic diversityDesmanthus paspalaceusDesmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected - containing isolates with different abiotic-stress tolerances - showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126 - previously isolated from Leucaena leucocephala - that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera -rhizobia, sinorhizobia, and mesorhizobia- of full N<inf>2</inf>-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N<inf>2</inf> fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus.Instituto de Biotecnologia y Biologia Molecular2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85037enginfo:eu-repo/semantics/altIdentifier/issn/1932-6203info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0104636info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:12Zoai:sedici.unlp.edu.ar:10915/85037Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:12.829SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| title |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| spellingShingle |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina Fornasero, Laura Viviana Biología genetic diversity Desmanthus paspalaceus |
| title_short |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| title_full |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| title_fullStr |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| title_full_unstemmed |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| title_sort |
Phenotypic, Molecular and Symbiotic Characterization of the Rhizobial Symbionts of Desmanthus paspalaceus (Lindm.) Burkart That Grow in the Province of Santa Fe, Argentina |
| dc.creator.none.fl_str_mv |
Fornasero, Laura Viviana Del Papa, María Florencia López, José Luis Albicoro, Francisco Javier Zabala, Juan Marcelo Toniutti, María Antonieta Pensiero, José Francisco Lagares, Antonio |
| author |
Fornasero, Laura Viviana |
| author_facet |
Fornasero, Laura Viviana Del Papa, María Florencia López, José Luis Albicoro, Francisco Javier Zabala, Juan Marcelo Toniutti, María Antonieta Pensiero, José Francisco Lagares, Antonio |
| author_role |
author |
| author2 |
Del Papa, María Florencia López, José Luis Albicoro, Francisco Javier Zabala, Juan Marcelo Toniutti, María Antonieta Pensiero, José Francisco Lagares, Antonio |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Biología genetic diversity Desmanthus paspalaceus |
| topic |
Biología genetic diversity Desmanthus paspalaceus |
| dc.description.none.fl_txt_mv |
Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected - containing isolates with different abiotic-stress tolerances - showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126 - previously isolated from Leucaena leucocephala - that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera -rhizobia, sinorhizobia, and mesorhizobia- of full N<inf>2</inf>-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N<inf>2</inf> fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus. Instituto de Biotecnologia y Biologia Molecular |
| description |
Desmanthus paspalaceus (Lindm.) Burkart belongs to the D. virgatus complex, subfamily Mimosoidae. The known potential as livestock fodder of several of these legumes prompted us to undertake a phenotypic, molecular, and symbiotic characterization of the D. paspalaceus symbionts in the Santa Fe province, Argentina. The rhizobia collected - containing isolates with different abiotic-stress tolerances - showed a remarkable genetic diversity by PCR fingerprinting, with 11 different amplification profiles present among 20 isolates. In selected isolates 16S-rDNA sequencing detected mesorhizobia (60%) and rhizobia (40%) within the collection, in contrast to the genus of the original inoculant strain CB3126 - previously isolated from Leucaena leucocephala - that we typified here through its 16S rDNA as Sinorhizobium terangae. The results revealed the establishment by diverse bacterial genera -rhizobia, sinorhizobia, and mesorhizobia- of full N<inf>2</inf>-fixing symbiotic associations with D. paspalaceus. This diversity was paralleled by the presence of at least two different nodC allelic variants. The identical nodC alleles of the Mesorhizobia sp. 10.L.4.2 and 10.L.5.3 notably failed to group within any of the currently described rhizo-/brady-/azorhizobial nodC clades. Interestingly, the nodC from S. terangae CB3126 clustered close to homologs from common bean nodulating rhizobia, but not with the nodC from S. terangae WSM1721 that nodulates Acacia. No previous data were available on nod-gene phylogeny for Desmanthus symbionts. A field assay indicated that inoculation of D. paspalaceus with the local Rhizobium sp. 10L.11.4 produced higher aerial-plant dry weights compared to S. teranga CB3126-inoculated plants. Neither the mesorhizobia 10.L.4.2 or 10.L.5.3 nor the rhizobium 10L.11.4 induced root nodules in L. leucocephala or P. vulgaris. The results show that some of the local isolates have remarkable tolerances to several abiotic stresses including acidity, salt, and temperature; while exhibiting prominent N<inf>2</inf> fixation; thus indicating suitability as candidates for inoculation of D. paspalaceus. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85037 |
| url |
http://sedici.unlp.edu.ar/handle/10915/85037 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1932-6203 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0104636 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783183129935872 |
| score |
12.982451 |