Optimización multi-objetivo : Aplicaciones a problemas del mundo real

Autores
López, Javier
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
libro
Estado
versión publicada
Descripción
Cuando hablamos de optimización en el ámbito de las ciencias de la computación hacemos referencia al mismo concepto coloquial asociado a esa palabra, la concreción de un objetivo utilizando la menor cantidad de recursos disponibles, o en una visión similar, la obtención del mejor objetivo posible utilizando todos los recursos con lo que se cuenta. Los métodos para encontrar la mejor solución (óptima) varían de acuerdo a la complejidad del problema enfrentado. Para problemas triviales, el cerebro humano posee la capacidad de resolverlos (encontrar la mejor solución) directamente, pero a medida que aumenta la complejidad del problema, se hace necesario contar con herramientas adicionales. En esta dirección, existe una amplia variedad de técnicas para resolver problemas complejos. Dentro de estas técnicas, podemos mencionar las técnicas exactas. Este tipo de algoritmos son capaces de encontrar las soluciones óptimas a un problema dado en una cantidad finita de tiempo. Como contrapartida, requiere que el problema a resolver cumpla con condiciones bastante restrictivas. Existen además un conjunto muy amplio de técnica aproximadas, conocidas como metaheurísticas. Estas técnicas se caracterizan por integrar de diversas maneras procedimientos de mejora local y estrategias de alto nivel para crear un proceso capaz de escapar de óptimos locales y realizar una búsqueda robusta en el espacio de búsqueda del problema. En su evolución, estos métodos han incorporado diferentes estrategias para evitar la convergencia a óptimos locales, especialmente en espacios de búsqueda complejos. Este tipo de procedimientos tienen como principal característica que son aplicables a cualquier tipo de problemas, sin requerir ninguna condición particular a cumplir por los mismos. Estas técnicas no garantizan en ningún caso la obtención de los valores óptimos de los problemas en cuestión, pero se ha demostrado que son capaces de alcanzar muy buenos valores de soluciones en períodos de tiempo cortos. Además, es posible aplicarlas a problemas de diferentes tipos sin mayores modificaciones, mostrando su robustez y su amplio espectro de uso. La mayoría de estas técnicas están inspiradas en procesos biológicos y/o físicos, y tratan de simular el comportamiento propio de estos procesos que favorecen la búsqueda y detección de soluciones mejores en forma iterativa. La más difundida de estas técnicas son los algoritmos genéticos, basados en el mecanismo de evolución natural de las especies. Existen diferentes tipos de problemas, y multitud de taxonomías para clasificar los mismos. En el alcance de este trabajo nos interesa diferenciar los problemas en cuanto a la cantidad de objetivos a optimizar. Con esta consideración en mente, surge una primera clasificación evidente, los problemas mono-objetivo, donde existe solo una función objetivo a optimizar, y los problemas multi-objetivo donde existe más de una función objetivo. En el presente trabajo se estudia la utilización de metaheurísticas evolutivas para la resolución de problemas complejos, con uno y con más de un objetivo. Se efectúa un análisis del estado de situación en la materia, y se proponen nuevas variantes de algoritmos existentes, validando que las mismas mejoran resultados reportados en la literatura. En una primera instancia, se propone una mejora a la versión canónica y mono-objetivo del algoritmo PSO, luego de un estudio detallado del patrón de movimientos de las partículas en el espacio de soluciones. Estas mejoras se proponen en las versiones de PSO para espacios continuos y para espacios binarios. Asimismo, se analiza la implementación de una versión paralela de esta técnica evolutiva. Como segunda contribución, se plantea una nueva versión de un algoritmo PSO multiobjetivo (MOPSO Multi Objective Particle Swarm Optimization) incorporando la posibilidad de variar dinámicamente el tamaño de la población, lo que constituye una contribución innovadora en problemas con mas de una función objetivo. Por último, se utilizan las técnicas representativas del estado del arte en optimización multi-objetivo aplicando estos métodos a la problemática de una empresa de emergencias médicas y atención de consultas domiciliarias. Se logró poner en marcha un proceso de asignación de móviles a prestaciones médicas basado en metaheurísticas, logrando optimizar el proceso de asignación de móviles médicos a prestaciones médicas en la principal compañía de esta industria a nivel nacional.
Tesis doctoral de la Facultad de Informática (UNLP). Grado alcanzado: Doctor en Ciencias Informáticas. Director de tesis: Laura Lanzarini. Co-director de tesis: Guillermo Leguizamón. La tesis, presentada en el año 2013, obtuvo el Premio "Dr. Raúl Gallard" en el 2014.
Facultad de Informática
Materia
Ciencias Informáticas
Algorithms
Problem Solving, Control Methods, and Search
Optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/45214

id SEDICI_d15cf7f8b436b68559107efb2c207dfb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/45214
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Optimización multi-objetivo : Aplicaciones a problemas del mundo realLópez, JavierCiencias InformáticasAlgorithmsProblem Solving, Control Methods, and SearchOptimizationCuando hablamos de optimización en el ámbito de las ciencias de la computación hacemos referencia al mismo concepto coloquial asociado a esa palabra, la concreción de un objetivo utilizando la menor cantidad de recursos disponibles, o en una visión similar, la obtención del mejor objetivo posible utilizando todos los recursos con lo que se cuenta. Los métodos para encontrar la mejor solución (óptima) varían de acuerdo a la complejidad del problema enfrentado. Para problemas triviales, el cerebro humano posee la capacidad de resolverlos (encontrar la mejor solución) directamente, pero a medida que aumenta la complejidad del problema, se hace necesario contar con herramientas adicionales. En esta dirección, existe una amplia variedad de técnicas para resolver problemas complejos. Dentro de estas técnicas, podemos mencionar las técnicas exactas. Este tipo de algoritmos son capaces de encontrar las soluciones óptimas a un problema dado en una cantidad finita de tiempo. Como contrapartida, requiere que el problema a resolver cumpla con condiciones bastante restrictivas. Existen además un conjunto muy amplio de técnica aproximadas, conocidas como metaheurísticas. Estas técnicas se caracterizan por integrar de diversas maneras procedimientos de mejora local y estrategias de alto nivel para crear un proceso capaz de escapar de óptimos locales y realizar una búsqueda robusta en el espacio de búsqueda del problema. En su evolución, estos métodos han incorporado diferentes estrategias para evitar la convergencia a óptimos locales, especialmente en espacios de búsqueda complejos. Este tipo de procedimientos tienen como principal característica que son aplicables a cualquier tipo de problemas, sin requerir ninguna condición particular a cumplir por los mismos. Estas técnicas no garantizan en ningún caso la obtención de los valores óptimos de los problemas en cuestión, pero se ha demostrado que son capaces de alcanzar muy buenos valores de soluciones en períodos de tiempo cortos. Además, es posible aplicarlas a problemas de diferentes tipos sin mayores modificaciones, mostrando su robustez y su amplio espectro de uso. La mayoría de estas técnicas están inspiradas en procesos biológicos y/o físicos, y tratan de simular el comportamiento propio de estos procesos que favorecen la búsqueda y detección de soluciones mejores en forma iterativa. La más difundida de estas técnicas son los algoritmos genéticos, basados en el mecanismo de evolución natural de las especies. Existen diferentes tipos de problemas, y multitud de taxonomías para clasificar los mismos. En el alcance de este trabajo nos interesa diferenciar los problemas en cuanto a la cantidad de objetivos a optimizar. Con esta consideración en mente, surge una primera clasificación evidente, los problemas mono-objetivo, donde existe solo una función objetivo a optimizar, y los problemas multi-objetivo donde existe más de una función objetivo. En el presente trabajo se estudia la utilización de metaheurísticas evolutivas para la resolución de problemas complejos, con uno y con más de un objetivo. Se efectúa un análisis del estado de situación en la materia, y se proponen nuevas variantes de algoritmos existentes, validando que las mismas mejoran resultados reportados en la literatura. En una primera instancia, se propone una mejora a la versión canónica y mono-objetivo del algoritmo PSO, luego de un estudio detallado del patrón de movimientos de las partículas en el espacio de soluciones. Estas mejoras se proponen en las versiones de PSO para espacios continuos y para espacios binarios. Asimismo, se analiza la implementación de una versión paralela de esta técnica evolutiva. Como segunda contribución, se plantea una nueva versión de un algoritmo PSO multiobjetivo (MOPSO Multi Objective Particle Swarm Optimization) incorporando la posibilidad de variar dinámicamente el tamaño de la población, lo que constituye una contribución innovadora en problemas con mas de una función objetivo. Por último, se utilizan las técnicas representativas del estado del arte en optimización multi-objetivo aplicando estos métodos a la problemática de una empresa de emergencias médicas y atención de consultas domiciliarias. Se logró poner en marcha un proceso de asignación de móviles a prestaciones médicas basado en metaheurísticas, logrando optimizar el proceso de asignación de móviles médicos a prestaciones médicas en la principal compañía de esta industria a nivel nacional.Tesis doctoral de la Facultad de Informática (UNLP). Grado alcanzado: Doctor en Ciencias Informáticas. Director de tesis: Laura Lanzarini. Co-director de tesis: Guillermo Leguizamón. La tesis, presentada en el año 2013, obtuvo el Premio "Dr. Raúl Gallard" en el 2014.Facultad de InformáticaEditorial de la Universidad Nacional de La Plata (EDULP)2015info:eu-repo/semantics/bookinfo:ar-repo/semantics/libroinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33application/pdfhttp://sedici.unlp.edu.ar/handle/10915/45214https://doi.org/10.35537/10915/45214spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-1985-59-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:54:50Zoai:sedici.unlp.edu.ar:10915/45214Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:54:50.782SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Optimización multi-objetivo : Aplicaciones a problemas del mundo real
title Optimización multi-objetivo : Aplicaciones a problemas del mundo real
spellingShingle Optimización multi-objetivo : Aplicaciones a problemas del mundo real
López, Javier
Ciencias Informáticas
Algorithms
Problem Solving, Control Methods, and Search
Optimization
title_short Optimización multi-objetivo : Aplicaciones a problemas del mundo real
title_full Optimización multi-objetivo : Aplicaciones a problemas del mundo real
title_fullStr Optimización multi-objetivo : Aplicaciones a problemas del mundo real
title_full_unstemmed Optimización multi-objetivo : Aplicaciones a problemas del mundo real
title_sort Optimización multi-objetivo : Aplicaciones a problemas del mundo real
dc.creator.none.fl_str_mv López, Javier
author López, Javier
author_facet López, Javier
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Algorithms
Problem Solving, Control Methods, and Search
Optimization
topic Ciencias Informáticas
Algorithms
Problem Solving, Control Methods, and Search
Optimization
dc.description.none.fl_txt_mv Cuando hablamos de optimización en el ámbito de las ciencias de la computación hacemos referencia al mismo concepto coloquial asociado a esa palabra, la concreción de un objetivo utilizando la menor cantidad de recursos disponibles, o en una visión similar, la obtención del mejor objetivo posible utilizando todos los recursos con lo que se cuenta. Los métodos para encontrar la mejor solución (óptima) varían de acuerdo a la complejidad del problema enfrentado. Para problemas triviales, el cerebro humano posee la capacidad de resolverlos (encontrar la mejor solución) directamente, pero a medida que aumenta la complejidad del problema, se hace necesario contar con herramientas adicionales. En esta dirección, existe una amplia variedad de técnicas para resolver problemas complejos. Dentro de estas técnicas, podemos mencionar las técnicas exactas. Este tipo de algoritmos son capaces de encontrar las soluciones óptimas a un problema dado en una cantidad finita de tiempo. Como contrapartida, requiere que el problema a resolver cumpla con condiciones bastante restrictivas. Existen además un conjunto muy amplio de técnica aproximadas, conocidas como metaheurísticas. Estas técnicas se caracterizan por integrar de diversas maneras procedimientos de mejora local y estrategias de alto nivel para crear un proceso capaz de escapar de óptimos locales y realizar una búsqueda robusta en el espacio de búsqueda del problema. En su evolución, estos métodos han incorporado diferentes estrategias para evitar la convergencia a óptimos locales, especialmente en espacios de búsqueda complejos. Este tipo de procedimientos tienen como principal característica que son aplicables a cualquier tipo de problemas, sin requerir ninguna condición particular a cumplir por los mismos. Estas técnicas no garantizan en ningún caso la obtención de los valores óptimos de los problemas en cuestión, pero se ha demostrado que son capaces de alcanzar muy buenos valores de soluciones en períodos de tiempo cortos. Además, es posible aplicarlas a problemas de diferentes tipos sin mayores modificaciones, mostrando su robustez y su amplio espectro de uso. La mayoría de estas técnicas están inspiradas en procesos biológicos y/o físicos, y tratan de simular el comportamiento propio de estos procesos que favorecen la búsqueda y detección de soluciones mejores en forma iterativa. La más difundida de estas técnicas son los algoritmos genéticos, basados en el mecanismo de evolución natural de las especies. Existen diferentes tipos de problemas, y multitud de taxonomías para clasificar los mismos. En el alcance de este trabajo nos interesa diferenciar los problemas en cuanto a la cantidad de objetivos a optimizar. Con esta consideración en mente, surge una primera clasificación evidente, los problemas mono-objetivo, donde existe solo una función objetivo a optimizar, y los problemas multi-objetivo donde existe más de una función objetivo. En el presente trabajo se estudia la utilización de metaheurísticas evolutivas para la resolución de problemas complejos, con uno y con más de un objetivo. Se efectúa un análisis del estado de situación en la materia, y se proponen nuevas variantes de algoritmos existentes, validando que las mismas mejoran resultados reportados en la literatura. En una primera instancia, se propone una mejora a la versión canónica y mono-objetivo del algoritmo PSO, luego de un estudio detallado del patrón de movimientos de las partículas en el espacio de soluciones. Estas mejoras se proponen en las versiones de PSO para espacios continuos y para espacios binarios. Asimismo, se analiza la implementación de una versión paralela de esta técnica evolutiva. Como segunda contribución, se plantea una nueva versión de un algoritmo PSO multiobjetivo (MOPSO Multi Objective Particle Swarm Optimization) incorporando la posibilidad de variar dinámicamente el tamaño de la población, lo que constituye una contribución innovadora en problemas con mas de una función objetivo. Por último, se utilizan las técnicas representativas del estado del arte en optimización multi-objetivo aplicando estos métodos a la problemática de una empresa de emergencias médicas y atención de consultas domiciliarias. Se logró poner en marcha un proceso de asignación de móviles a prestaciones médicas basado en metaheurísticas, logrando optimizar el proceso de asignación de móviles médicos a prestaciones médicas en la principal compañía de esta industria a nivel nacional.
Tesis doctoral de la Facultad de Informática (UNLP). Grado alcanzado: Doctor en Ciencias Informáticas. Director de tesis: Laura Lanzarini. Co-director de tesis: Guillermo Leguizamón. La tesis, presentada en el año 2013, obtuvo el Premio "Dr. Raúl Gallard" en el 2014.
Facultad de Informática
description Cuando hablamos de optimización en el ámbito de las ciencias de la computación hacemos referencia al mismo concepto coloquial asociado a esa palabra, la concreción de un objetivo utilizando la menor cantidad de recursos disponibles, o en una visión similar, la obtención del mejor objetivo posible utilizando todos los recursos con lo que se cuenta. Los métodos para encontrar la mejor solución (óptima) varían de acuerdo a la complejidad del problema enfrentado. Para problemas triviales, el cerebro humano posee la capacidad de resolverlos (encontrar la mejor solución) directamente, pero a medida que aumenta la complejidad del problema, se hace necesario contar con herramientas adicionales. En esta dirección, existe una amplia variedad de técnicas para resolver problemas complejos. Dentro de estas técnicas, podemos mencionar las técnicas exactas. Este tipo de algoritmos son capaces de encontrar las soluciones óptimas a un problema dado en una cantidad finita de tiempo. Como contrapartida, requiere que el problema a resolver cumpla con condiciones bastante restrictivas. Existen además un conjunto muy amplio de técnica aproximadas, conocidas como metaheurísticas. Estas técnicas se caracterizan por integrar de diversas maneras procedimientos de mejora local y estrategias de alto nivel para crear un proceso capaz de escapar de óptimos locales y realizar una búsqueda robusta en el espacio de búsqueda del problema. En su evolución, estos métodos han incorporado diferentes estrategias para evitar la convergencia a óptimos locales, especialmente en espacios de búsqueda complejos. Este tipo de procedimientos tienen como principal característica que son aplicables a cualquier tipo de problemas, sin requerir ninguna condición particular a cumplir por los mismos. Estas técnicas no garantizan en ningún caso la obtención de los valores óptimos de los problemas en cuestión, pero se ha demostrado que son capaces de alcanzar muy buenos valores de soluciones en períodos de tiempo cortos. Además, es posible aplicarlas a problemas de diferentes tipos sin mayores modificaciones, mostrando su robustez y su amplio espectro de uso. La mayoría de estas técnicas están inspiradas en procesos biológicos y/o físicos, y tratan de simular el comportamiento propio de estos procesos que favorecen la búsqueda y detección de soluciones mejores en forma iterativa. La más difundida de estas técnicas son los algoritmos genéticos, basados en el mecanismo de evolución natural de las especies. Existen diferentes tipos de problemas, y multitud de taxonomías para clasificar los mismos. En el alcance de este trabajo nos interesa diferenciar los problemas en cuanto a la cantidad de objetivos a optimizar. Con esta consideración en mente, surge una primera clasificación evidente, los problemas mono-objetivo, donde existe solo una función objetivo a optimizar, y los problemas multi-objetivo donde existe más de una función objetivo. En el presente trabajo se estudia la utilización de metaheurísticas evolutivas para la resolución de problemas complejos, con uno y con más de un objetivo. Se efectúa un análisis del estado de situación en la materia, y se proponen nuevas variantes de algoritmos existentes, validando que las mismas mejoran resultados reportados en la literatura. En una primera instancia, se propone una mejora a la versión canónica y mono-objetivo del algoritmo PSO, luego de un estudio detallado del patrón de movimientos de las partículas en el espacio de soluciones. Estas mejoras se proponen en las versiones de PSO para espacios continuos y para espacios binarios. Asimismo, se analiza la implementación de una versión paralela de esta técnica evolutiva. Como segunda contribución, se plantea una nueva versión de un algoritmo PSO multiobjetivo (MOPSO Multi Objective Particle Swarm Optimization) incorporando la posibilidad de variar dinámicamente el tamaño de la población, lo que constituye una contribución innovadora en problemas con mas de una función objetivo. Por último, se utilizan las técnicas representativas del estado del arte en optimización multi-objetivo aplicando estos métodos a la problemática de una empresa de emergencias médicas y atención de consultas domiciliarias. Se logró poner en marcha un proceso de asignación de móviles a prestaciones médicas basado en metaheurísticas, logrando optimizar el proceso de asignación de móviles médicos a prestaciones médicas en la principal compañía de esta industria a nivel nacional.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/book
info:ar-repo/semantics/libro
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_2f33
format book
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/45214
https://doi.org/10.35537/10915/45214
url http://sedici.unlp.edu.ar/handle/10915/45214
https://doi.org/10.35537/10915/45214
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-1985-59-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063989605269504
score 13.216834