Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks
- Autores
- Bouza, Magdalena; Cernuschi Frías, Bruno
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper we propose a new method for common visual pattern identi cation via Directed Graphs. For this we match common feature points between two images and then apply hierarchical clustering methods to one of them to discriminate between di erent visual patterns. In order to achieve this last task we introduce a technique to obtain an asymmetric dissimilarity function AX(x; x1) between the nodes X of the network N = (X;Ax). For each node, the method weighs the distance between each node and the distance with all the other neighbours. A dendrogram is later obtained as the output of the hierarchical clustering method. Finally we show a criteria to select one of the multiple partitions that conform the dendrogram.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
Clustering
PATTERN RECOGNITION
IMAGE PROCESSING AND COMPUTER VISION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/52132
Ver los metadatos del registro completo
id |
SEDICI_d05061424229d4cb759ec179a1b1c34a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/52132 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric NetworksBouza, MagdalenaCernuschi Frías, BrunoCiencias InformáticasClusteringPATTERN RECOGNITIONIMAGE PROCESSING AND COMPUTER VISIONIn this paper we propose a new method for common visual pattern identi cation via Directed Graphs. For this we match common feature points between two images and then apply hierarchical clustering methods to one of them to discriminate between di erent visual patterns. In order to achieve this last task we introduce a technique to obtain an asymmetric dissimilarity function AX(x; x<sup>1</sup>) between the nodes X of the network N = (X;A<sub>x</sub>). For each node, the method weighs the distance between each node and the distance with all the other neighbours. A dendrogram is later obtained as the output of the hierarchical clustering method. Finally we show a criteria to select one of the multiple partitions that conform the dendrogram.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2015info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf192-199http://sedici.unlp.edu.ar/handle/10915/52132enginfo:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/asai192-199.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:37:09Zoai:sedici.unlp.edu.ar:10915/52132Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:37:09.924SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
title |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
spellingShingle |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks Bouza, Magdalena Ciencias Informáticas Clustering PATTERN RECOGNITION IMAGE PROCESSING AND COMPUTER VISION |
title_short |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
title_full |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
title_fullStr |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
title_full_unstemmed |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
title_sort |
Common Visual Pattern Recognition Using Hierarchical Clustering Methods with Asymmetric Networks |
dc.creator.none.fl_str_mv |
Bouza, Magdalena Cernuschi Frías, Bruno |
author |
Bouza, Magdalena |
author_facet |
Bouza, Magdalena Cernuschi Frías, Bruno |
author_role |
author |
author2 |
Cernuschi Frías, Bruno |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Clustering PATTERN RECOGNITION IMAGE PROCESSING AND COMPUTER VISION |
topic |
Ciencias Informáticas Clustering PATTERN RECOGNITION IMAGE PROCESSING AND COMPUTER VISION |
dc.description.none.fl_txt_mv |
In this paper we propose a new method for common visual pattern identi cation via Directed Graphs. For this we match common feature points between two images and then apply hierarchical clustering methods to one of them to discriminate between di erent visual patterns. In order to achieve this last task we introduce a technique to obtain an asymmetric dissimilarity function AX(x; x<sup>1</sup>) between the nodes X of the network N = (X;A<sub>x</sub>). For each node, the method weighs the distance between each node and the distance with all the other neighbours. A dendrogram is later obtained as the output of the hierarchical clustering method. Finally we show a criteria to select one of the multiple partitions that conform the dendrogram. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
In this paper we propose a new method for common visual pattern identi cation via Directed Graphs. For this we match common feature points between two images and then apply hierarchical clustering methods to one of them to discriminate between di erent visual patterns. In order to achieve this last task we introduce a technique to obtain an asymmetric dissimilarity function AX(x; x<sup>1</sup>) between the nodes X of the network N = (X;A<sub>x</sub>). For each node, the method weighs the distance between each node and the distance with all the other neighbours. A dendrogram is later obtained as the output of the hierarchical clustering method. Finally we show a criteria to select one of the multiple partitions that conform the dendrogram. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/52132 |
url |
http://sedici.unlp.edu.ar/handle/10915/52132 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/asai192-199.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 192-199 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260227408265216 |
score |
13.13397 |