The quark anti-quark potential and the cusp anomalous dimension from a TBA equation

Autores
Correa, Diego Hernán; Maldacena, Juan M.; Sever, Amit
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We derive a set of integral equations of the TBA type for the generalized cusp anomalous dimension, or the quark antiquark potential on the three sphere, as a function of the angles. We do this by considering a family of local operators on a Wilson loop with charge L. In the large L limit the problem can be solved in terms of a certain boundary reflection matrix. We determine this reflection matrix by using the symmetries and the boundary crossing equation. The cusp is introduced through a relative rotation between the two boundaries. Then the TBA trick of exchanging space and time leads to an exact equation for all values of L. The L = 0 case corresponds to the cusped Wilson loop with no operators inserted. We then derive a slightly simplified integral equation which describes the small angle limit. We solve this equation up to three loops in perturbation theory and match the results that were obtained with more direct approaches.
Instituto de Física La Plata
Materia
Ciencias Exactas
Hooft and Polyakov loops
Scattering amplitudes
Wilson
Integrable field theories
AdS-CFT Correspondence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/96169

id SEDICI_d02b2c47c21e3f64bc0ec236f3b4c0c5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/96169
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The quark anti-quark potential and the cusp anomalous dimension from a TBA equationCorrea, Diego HernánMaldacena, Juan M.Sever, AmitCiencias ExactasHooft and Polyakov loopsScattering amplitudesWilsonIntegrable field theoriesAdS-CFT CorrespondenceWe derive a set of integral equations of the TBA type for the generalized cusp anomalous dimension, or the quark antiquark potential on the three sphere, as a function of the angles. We do this by considering a family of local operators on a Wilson loop with charge L. In the large L limit the problem can be solved in terms of a certain boundary reflection matrix. We determine this reflection matrix by using the symmetries and the boundary crossing equation. The cusp is introduced through a relative rotation between the two boundaries. Then the TBA trick of exchanging space and time leads to an exact equation for all values of L. The L = 0 case corresponds to the cusped Wilson loop with no operators inserted. We then derive a slightly simplified integral equation which describes the small angle limit. We solve this equation up to three loops in perturbation theory and match the results that were obtained with more direct approaches.Instituto de Física La Plata2012-08-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/96169enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/75091info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP08%282012%29134info:eu-repo/semantics/altIdentifier/issn/1126-6708info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2012)134info:eu-repo/semantics/altIdentifier/hdl/11336/75091info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:52:37Zoai:sedici.unlp.edu.ar:10915/96169Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:52:37.301SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
title The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
spellingShingle The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
Correa, Diego Hernán
Ciencias Exactas
Hooft and Polyakov loops
Scattering amplitudes
Wilson
Integrable field theories
AdS-CFT Correspondence
title_short The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
title_full The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
title_fullStr The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
title_full_unstemmed The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
title_sort The quark anti-quark potential and the cusp anomalous dimension from a TBA equation
dc.creator.none.fl_str_mv Correa, Diego Hernán
Maldacena, Juan M.
Sever, Amit
author Correa, Diego Hernán
author_facet Correa, Diego Hernán
Maldacena, Juan M.
Sever, Amit
author_role author
author2 Maldacena, Juan M.
Sever, Amit
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Hooft and Polyakov loops
Scattering amplitudes
Wilson
Integrable field theories
AdS-CFT Correspondence
topic Ciencias Exactas
Hooft and Polyakov loops
Scattering amplitudes
Wilson
Integrable field theories
AdS-CFT Correspondence
dc.description.none.fl_txt_mv We derive a set of integral equations of the TBA type for the generalized cusp anomalous dimension, or the quark antiquark potential on the three sphere, as a function of the angles. We do this by considering a family of local operators on a Wilson loop with charge L. In the large L limit the problem can be solved in terms of a certain boundary reflection matrix. We determine this reflection matrix by using the symmetries and the boundary crossing equation. The cusp is introduced through a relative rotation between the two boundaries. Then the TBA trick of exchanging space and time leads to an exact equation for all values of L. The L = 0 case corresponds to the cusped Wilson loop with no operators inserted. We then derive a slightly simplified integral equation which describes the small angle limit. We solve this equation up to three loops in perturbation theory and match the results that were obtained with more direct approaches.
Instituto de Física La Plata
description We derive a set of integral equations of the TBA type for the generalized cusp anomalous dimension, or the quark antiquark potential on the three sphere, as a function of the angles. We do this by considering a family of local operators on a Wilson loop with charge L. In the large L limit the problem can be solved in terms of a certain boundary reflection matrix. We determine this reflection matrix by using the symmetries and the boundary crossing equation. The cusp is introduced through a relative rotation between the two boundaries. Then the TBA trick of exchanging space and time leads to an exact equation for all values of L. The L = 0 case corresponds to the cusped Wilson loop with no operators inserted. We then derive a slightly simplified integral equation which describes the small angle limit. We solve this equation up to three loops in perturbation theory and match the results that were obtained with more direct approaches.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/96169
url http://sedici.unlp.edu.ar/handle/10915/96169
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/75091
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP08%282012%29134
info:eu-repo/semantics/altIdentifier/issn/1126-6708
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2012)134
info:eu-repo/semantics/altIdentifier/hdl/11336/75091
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260408049598464
score 13.13397