Cusped Wilson lines in symmetric representations

Autores
Correa, Diego Hernán; Schaposnik Massolo, Fidel Iván; Trancanelli, Diego
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Abstract: We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-k symmetric representation of the gauge group U(N) for N=4 super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and kλ≫N. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.
Instituto de Física La Plata
Materia
Física
AdS-CFT Correspondence
D-branes
Wilson
’t Hooft and Polyakov loops
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86309

id SEDICI_091e5dbdd5cccaba01b17c5865bba58b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86309
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Cusped Wilson lines in symmetric representationsCorrea, Diego HernánSchaposnik Massolo, Fidel IvánTrancanelli, DiegoFísicaAdS-CFT CorrespondenceD-branesWilson’t Hooft and Polyakov loopsAbstract: We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-k symmetric representation of the gauge group U(N) for N=4 super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and kλ≫N. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.Instituto de Física La Plata2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86309enginfo:eu-repo/semantics/altIdentifier/issn/1126-6708info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2015)091info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:49:12Zoai:sedici.unlp.edu.ar:10915/86309Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:49:12.794SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Cusped Wilson lines in symmetric representations
title Cusped Wilson lines in symmetric representations
spellingShingle Cusped Wilson lines in symmetric representations
Correa, Diego Hernán
Física
AdS-CFT Correspondence
D-branes
Wilson
’t Hooft and Polyakov loops
title_short Cusped Wilson lines in symmetric representations
title_full Cusped Wilson lines in symmetric representations
title_fullStr Cusped Wilson lines in symmetric representations
title_full_unstemmed Cusped Wilson lines in symmetric representations
title_sort Cusped Wilson lines in symmetric representations
dc.creator.none.fl_str_mv Correa, Diego Hernán
Schaposnik Massolo, Fidel Iván
Trancanelli, Diego
author Correa, Diego Hernán
author_facet Correa, Diego Hernán
Schaposnik Massolo, Fidel Iván
Trancanelli, Diego
author_role author
author2 Schaposnik Massolo, Fidel Iván
Trancanelli, Diego
author2_role author
author
dc.subject.none.fl_str_mv Física
AdS-CFT Correspondence
D-branes
Wilson
’t Hooft and Polyakov loops
topic Física
AdS-CFT Correspondence
D-branes
Wilson
’t Hooft and Polyakov loops
dc.description.none.fl_txt_mv Abstract: We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-k symmetric representation of the gauge group U(N) for N=4 super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and kλ≫N. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.
Instituto de Física La Plata
description Abstract: We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-k symmetric representation of the gauge group U(N) for N=4 super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and kλ≫N. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86309
url http://sedici.unlp.edu.ar/handle/10915/86309
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1126-6708
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2015)091
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260368269770752
score 13.13397