Parallel processing DNA sequences on multicluster and grid architectures : Software overhead

Autores
Chichizola, Franco; Naiouf, Marcelo; De Giusti, Laura Cristina; Rodriguez, Ismael Pablo; De Giusti, Armando Eduardo
Año de publicación
2008
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A DNA sequence analysis parallelization in large databases using cluster, multi-cluster, and GRID is presented. Achievable speedup, scalability, and overhead introduced by communications are discussed, and the impact of the Grid middleware on the performance obtained with clusters is detailed. The experimental work carried out with homogeneous and heterogeneous clusters is presented, along with a comparison of the results obtained when migrating the algorithms to a GRID. Finally, current lines of work related to the study of models and paradigms for the resolution of parallel algorithms on GRID architectures are presented.
Workshop de Procesamiento Distribuido y Paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Parallel algorithms
Distributed databases
Clustering
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21981

id SEDICI_cf7388a4add0c2ff69012f0487a65c6b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21981
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parallel processing DNA sequences on multicluster and grid architectures : Software overheadChichizola, FrancoNaiouf, MarceloDe Giusti, Laura CristinaRodriguez, Ismael PabloDe Giusti, Armando EduardoCiencias InformáticasParallel algorithmsDistributed databasesClusteringA DNA sequence analysis parallelization in large databases using cluster, multi-cluster, and GRID is presented. Achievable speedup, scalability, and overhead introduced by communications are discussed, and the impact of the Grid middleware on the performance obtained with clusters is detailed. The experimental work carried out with homogeneous and heterogeneous clusters is presented, along with a comparison of the results obtained when migrating the algorithms to a GRID. Finally, current lines of work related to the study of models and paradigms for the resolution of parallel algorithms on GRID architectures are presented.Workshop de Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21981enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:42Zoai:sedici.unlp.edu.ar:10915/21981Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:42.658SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
title Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
spellingShingle Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
Chichizola, Franco
Ciencias Informáticas
Parallel algorithms
Distributed databases
Clustering
title_short Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
title_full Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
title_fullStr Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
title_full_unstemmed Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
title_sort Parallel processing DNA sequences on multicluster and grid architectures : Software overhead
dc.creator.none.fl_str_mv Chichizola, Franco
Naiouf, Marcelo
De Giusti, Laura Cristina
Rodriguez, Ismael Pablo
De Giusti, Armando Eduardo
author Chichizola, Franco
author_facet Chichizola, Franco
Naiouf, Marcelo
De Giusti, Laura Cristina
Rodriguez, Ismael Pablo
De Giusti, Armando Eduardo
author_role author
author2 Naiouf, Marcelo
De Giusti, Laura Cristina
Rodriguez, Ismael Pablo
De Giusti, Armando Eduardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Parallel algorithms
Distributed databases
Clustering
topic Ciencias Informáticas
Parallel algorithms
Distributed databases
Clustering
dc.description.none.fl_txt_mv A DNA sequence analysis parallelization in large databases using cluster, multi-cluster, and GRID is presented. Achievable speedup, scalability, and overhead introduced by communications are discussed, and the impact of the Grid middleware on the performance obtained with clusters is detailed. The experimental work carried out with homogeneous and heterogeneous clusters is presented, along with a comparison of the results obtained when migrating the algorithms to a GRID. Finally, current lines of work related to the study of models and paradigms for the resolution of parallel algorithms on GRID architectures are presented.
Workshop de Procesamiento Distribuido y Paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI)
description A DNA sequence analysis parallelization in large databases using cluster, multi-cluster, and GRID is presented. Achievable speedup, scalability, and overhead introduced by communications are discussed, and the impact of the Grid middleware on the performance obtained with clusters is detailed. The experimental work carried out with homogeneous and heterogeneous clusters is presented, along with a comparison of the results obtained when migrating the algorithms to a GRID. Finally, current lines of work related to the study of models and paradigms for the resolution of parallel algorithms on GRID architectures are presented.
publishDate 2008
dc.date.none.fl_str_mv 2008-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21981
url http://sedici.unlp.edu.ar/handle/10915/21981
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260114707316736
score 13.13397