Are GPUs Non-Green Computing Devices?

Autores
Pi Puig, Martín; De Giusti, Laura Cristina; Naiouf, Marcelo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With energy consumption emerging as one of the biggest issues in the development of HPC (High Performance Computing) applications, the importance of detailed power-related research works becomes a priority. In the last years, GPU coprocessors have been increasingly used to accelerate many of these high-priced systems even though they are embedding millions of transistors on their chips delivering an immediate increase on power consumption necessities. This paper analyzes a set of applications from the Rodinia benchmark suite in terms of CPU and GPU performance and energy consumption. Specifically, it compares single-threaded and multi-threaded CPU versions with GPU implementations, and characterize the execution time, true instant power and average energy consumption to test the idea that GPUs are power-hungry computing devices.
Con el consumo de energía emergiendo como uno de los mayores problemas en el desarrollo de aplicaciones HPC (High Performance Computing), la importancia de trabajos específicos de investigación en este campo se convierte en una prioridad. En los últimos años, los coprocesadores GPU se han utilizado frecuentemente para acelerar muchos de estos costosos sistemas, a pesar de que incorporan millones de transistores en sus chips, lo que genera un aumento considerable en los requerimientos de energía. Este artículo analiza un conjunto de aplicaciones del benchmark Rodinia en términos de rendimiento y consumo de energía de CPU y GPU. Específicamente, se comparan las versiones secuenciales y multihilo en CPU con implementaciones GPU, caracterizando el tiempo de ejecución, la potencia real instantánea y el consumo promedio de energía, con el objetivo de probar la idea de que las GPU son dispositivos de baja eficiencia energética.
Facultad de Informática
Materia
Ciencias Informáticas
power
Rodinia
GPU
NVML
RAPL
Potencia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/70121

id SEDICI_cdf86038082bddda650cf43e42199c03
oai_identifier_str oai:sedici.unlp.edu.ar:10915/70121
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Are GPUs Non-Green Computing Devices?¿Son las GPUs dispositivos eficientes energéticamente?Pi Puig, MartínDe Giusti, Laura CristinaNaiouf, MarceloCiencias InformáticaspowerRodiniaGPUNVMLRAPLPotenciaWith energy consumption emerging as one of the biggest issues in the development of HPC (High Performance Computing) applications, the importance of detailed power-related research works becomes a priority. In the last years, GPU coprocessors have been increasingly used to accelerate many of these high-priced systems even though they are embedding millions of transistors on their chips delivering an immediate increase on power consumption necessities. This paper analyzes a set of applications from the Rodinia benchmark suite in terms of CPU and GPU performance and energy consumption. Specifically, it compares single-threaded and multi-threaded CPU versions with GPU implementations, and characterize the execution time, true instant power and average energy consumption to test the idea that GPUs are power-hungry computing devices.Con el consumo de energía emergiendo como uno de los mayores problemas en el desarrollo de aplicaciones HPC (High Performance Computing), la importancia de trabajos específicos de investigación en este campo se convierte en una prioridad. En los últimos años, los coprocesadores GPU se han utilizado frecuentemente para acelerar muchos de estos costosos sistemas, a pesar de que incorporan millones de transistores en sus chips, lo que genera un aumento considerable en los requerimientos de energía. Este artículo analiza un conjunto de aplicaciones del benchmark Rodinia en términos de rendimiento y consumo de energía de CPU y GPU. Específicamente, se comparan las versiones secuenciales y multihilo en CPU con implementaciones GPU, caracterizando el tiempo de ejecución, la potencia real instantánea y el consumo promedio de energía, con el objetivo de probar la idea de que las GPU son dispositivos de baja eficiencia energética.Facultad de Informática2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf153-159http://sedici.unlp.edu.ar/handle/10915/70121enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e17info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:52:06Zoai:sedici.unlp.edu.ar:10915/70121Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:52:06.889SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Are GPUs Non-Green Computing Devices?
¿Son las GPUs dispositivos eficientes energéticamente?
title Are GPUs Non-Green Computing Devices?
spellingShingle Are GPUs Non-Green Computing Devices?
Pi Puig, Martín
Ciencias Informáticas
power
Rodinia
GPU
NVML
RAPL
Potencia
title_short Are GPUs Non-Green Computing Devices?
title_full Are GPUs Non-Green Computing Devices?
title_fullStr Are GPUs Non-Green Computing Devices?
title_full_unstemmed Are GPUs Non-Green Computing Devices?
title_sort Are GPUs Non-Green Computing Devices?
dc.creator.none.fl_str_mv Pi Puig, Martín
De Giusti, Laura Cristina
Naiouf, Marcelo
author Pi Puig, Martín
author_facet Pi Puig, Martín
De Giusti, Laura Cristina
Naiouf, Marcelo
author_role author
author2 De Giusti, Laura Cristina
Naiouf, Marcelo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
power
Rodinia
GPU
NVML
RAPL
Potencia
topic Ciencias Informáticas
power
Rodinia
GPU
NVML
RAPL
Potencia
dc.description.none.fl_txt_mv With energy consumption emerging as one of the biggest issues in the development of HPC (High Performance Computing) applications, the importance of detailed power-related research works becomes a priority. In the last years, GPU coprocessors have been increasingly used to accelerate many of these high-priced systems even though they are embedding millions of transistors on their chips delivering an immediate increase on power consumption necessities. This paper analyzes a set of applications from the Rodinia benchmark suite in terms of CPU and GPU performance and energy consumption. Specifically, it compares single-threaded and multi-threaded CPU versions with GPU implementations, and characterize the execution time, true instant power and average energy consumption to test the idea that GPUs are power-hungry computing devices.
Con el consumo de energía emergiendo como uno de los mayores problemas en el desarrollo de aplicaciones HPC (High Performance Computing), la importancia de trabajos específicos de investigación en este campo se convierte en una prioridad. En los últimos años, los coprocesadores GPU se han utilizado frecuentemente para acelerar muchos de estos costosos sistemas, a pesar de que incorporan millones de transistores en sus chips, lo que genera un aumento considerable en los requerimientos de energía. Este artículo analiza un conjunto de aplicaciones del benchmark Rodinia en términos de rendimiento y consumo de energía de CPU y GPU. Específicamente, se comparan las versiones secuenciales y multihilo en CPU con implementaciones GPU, caracterizando el tiempo de ejecución, la potencia real instantánea y el consumo promedio de energía, con el objetivo de probar la idea de que las GPU son dispositivos de baja eficiencia energética.
Facultad de Informática
description With energy consumption emerging as one of the biggest issues in the development of HPC (High Performance Computing) applications, the importance of detailed power-related research works becomes a priority. In the last years, GPU coprocessors have been increasingly used to accelerate many of these high-priced systems even though they are embedding millions of transistors on their chips delivering an immediate increase on power consumption necessities. This paper analyzes a set of applications from the Rodinia benchmark suite in terms of CPU and GPU performance and energy consumption. Specifically, it compares single-threaded and multi-threaded CPU versions with GPU implementations, and characterize the execution time, true instant power and average energy consumption to test the idea that GPUs are power-hungry computing devices.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/70121
url http://sedici.unlp.edu.ar/handle/10915/70121
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e17
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
153-159
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783087196766208
score 12.982451