Implementation of a GNSS meteorological model to the estimation of the Haines Index

Autores
Fernández, Laura Isabel; Aragón Paz, Juan Manuel; Meza, Amalia Margarita; Mendoza, Luciano Pedro Oscar
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: The objective of this study was to look for a replacement to the radiosonde measurements that are necessary for the construction of an index of potential wildfire severity (i.e., Haines Index, HI) in areas of South America that have had few to no radiosonde launches. To this end, we tested the application of GPT2w, an empirical model originally developed for Global Navigation Satellite System (GNSS) meteorology. By using the GPT2w model, and starting from measured surface meteorological data (air pressure, temperature, and relative humidity), estimators of air temperature and dew-point air temperature at different pressure levels were generated. The selected testing area was a region of South America that included most of the Río de la Plata drainage basin, along with two hazardous areas: Sierras de Córdoba in Argentina and Serra da Canastra in Brazil. This region was chosen due to the availability of the radiosonde launches required for comparison during 2016. Results: To characterize the regional performance of HI, we used data from the European Centre for Medium-Range Weather Forecast’s (ECMWF) reanalysis model (ERA Interim; Dee et al., Quarterly Journal of the Royal Meteorological Society 137: 553–597, 2011) for the period 2000 to 2016. A statistical analysis of the differences between the simulated HI from GPT2w (HI_GPT2w) and the HI values derived from radiosonde measurements (HI_R) was performed. The results showed that HI_GPT2w reproduced HI_R values about 50% of the time, most accurately for lowseverity HI values (2 to 3, on a scale of 2 to 6). In general, HI_GPT2w exhibited an underestimation of HI that increased as the index value increased. We analyzed how this underestimation affected the different HI variants calculated. To this end, we recall that each HI variant results from the sum of the stability and moisture terms. The stability term resulted from the temperature difference at different pressure levels while the moisture term is represented by the dew-point depression. Thus, the pressure level limits in the stability term define the HI variant. In this study, we used the Low-variant HI (950 and 850 hPa) and the Mid-variant HI (850 and 700 hPa). If we analyze this underestimation according to the HI variants, the moisture term is responsible for the Low variant underestimation and the stability term is responsible for the Mid variant. Conclusion: The simple application of GPT2w to extrapolate the vertical values of temperature and its dew-point depression is not enough to reproduce the Haines Index as it was measured from radiosonde measurements. Nevertheless, an improved application of GPT2w and the extrapolated saturation water vapor pressure by using the Integrated Water Vapor from Global Navigation Satellite System (GNSS-IWV) values could improve the results
Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría
Materia
Ciencias Astronómicas
GNSS meteorology
GPT2w model
Haines Index
South America
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/124065

id SEDICI_cd74498933e9625166b4b5ef26e5424c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/124065
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Implementation of a GNSS meteorological model to the estimation of the Haines IndexFernández, Laura IsabelAragón Paz, Juan ManuelMeza, Amalia MargaritaMendoza, Luciano Pedro OscarCiencias AstronómicasGNSS meteorologyGPT2w modelHaines IndexSouth AmericaBackground: The objective of this study was to look for a replacement to the radiosonde measurements that are necessary for the construction of an index of potential wildfire severity (i.e., Haines Index, HI) in areas of South America that have had few to no radiosonde launches. To this end, we tested the application of GPT2w, an empirical model originally developed for Global Navigation Satellite System (GNSS) meteorology. By using the GPT2w model, and starting from measured surface meteorological data (air pressure, temperature, and relative humidity), estimators of air temperature and dew-point air temperature at different pressure levels were generated. The selected testing area was a region of South America that included most of the Río de la Plata drainage basin, along with two hazardous areas: Sierras de Córdoba in Argentina and Serra da Canastra in Brazil. This region was chosen due to the availability of the radiosonde launches required for comparison during 2016. Results: To characterize the regional performance of HI, we used data from the European Centre for Medium-Range Weather Forecast’s (ECMWF) reanalysis model (ERA Interim; Dee et al., Quarterly Journal of the Royal Meteorological Society 137: 553–597, 2011) for the period 2000 to 2016. A statistical analysis of the differences between the simulated HI from GPT2w (HI_GPT2w) and the HI values derived from radiosonde measurements (HI_R) was performed. The results showed that HI_GPT2w reproduced HI_R values about 50% of the time, most accurately for lowseverity HI values (2 to 3, on a scale of 2 to 6). In general, HI_GPT2w exhibited an underestimation of HI that increased as the index value increased. We analyzed how this underestimation affected the different HI variants calculated. To this end, we recall that each HI variant results from the sum of the stability and moisture terms. The stability term resulted from the temperature difference at different pressure levels while the moisture term is represented by the dew-point depression. Thus, the pressure level limits in the stability term define the HI variant. In this study, we used the Low-variant HI (950 and 850 hPa) and the Mid-variant HI (850 and 700 hPa). If we analyze this underestimation according to the HI variants, the moisture term is responsible for the Low variant underestimation and the stability term is responsible for the Mid variant. Conclusion: The simple application of GPT2w to extrapolate the vertical values of temperature and its dew-point depression is not enough to reproduce the Haines Index as it was measured from radiosonde measurements. Nevertheless, an improved application of GPT2w and the extrapolated saturation water vapor pressure by using the Integrated Water Vapor from Global Navigation Satellite System (GNSS-IWV) values could improve the resultsLaboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-18http://sedici.unlp.edu.ar/handle/10915/124065enginfo:eu-repo/semantics/altIdentifier/issn/1933-9747info:eu-repo/semantics/altIdentifier/doi/10.1186/s42408-018-0014-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:20Zoai:sedici.unlp.edu.ar:10915/124065Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:20.484SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Implementation of a GNSS meteorological model to the estimation of the Haines Index
title Implementation of a GNSS meteorological model to the estimation of the Haines Index
spellingShingle Implementation of a GNSS meteorological model to the estimation of the Haines Index
Fernández, Laura Isabel
Ciencias Astronómicas
GNSS meteorology
GPT2w model
Haines Index
South America
title_short Implementation of a GNSS meteorological model to the estimation of the Haines Index
title_full Implementation of a GNSS meteorological model to the estimation of the Haines Index
title_fullStr Implementation of a GNSS meteorological model to the estimation of the Haines Index
title_full_unstemmed Implementation of a GNSS meteorological model to the estimation of the Haines Index
title_sort Implementation of a GNSS meteorological model to the estimation of the Haines Index
dc.creator.none.fl_str_mv Fernández, Laura Isabel
Aragón Paz, Juan Manuel
Meza, Amalia Margarita
Mendoza, Luciano Pedro Oscar
author Fernández, Laura Isabel
author_facet Fernández, Laura Isabel
Aragón Paz, Juan Manuel
Meza, Amalia Margarita
Mendoza, Luciano Pedro Oscar
author_role author
author2 Aragón Paz, Juan Manuel
Meza, Amalia Margarita
Mendoza, Luciano Pedro Oscar
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
GNSS meteorology
GPT2w model
Haines Index
South America
topic Ciencias Astronómicas
GNSS meteorology
GPT2w model
Haines Index
South America
dc.description.none.fl_txt_mv Background: The objective of this study was to look for a replacement to the radiosonde measurements that are necessary for the construction of an index of potential wildfire severity (i.e., Haines Index, HI) in areas of South America that have had few to no radiosonde launches. To this end, we tested the application of GPT2w, an empirical model originally developed for Global Navigation Satellite System (GNSS) meteorology. By using the GPT2w model, and starting from measured surface meteorological data (air pressure, temperature, and relative humidity), estimators of air temperature and dew-point air temperature at different pressure levels were generated. The selected testing area was a region of South America that included most of the Río de la Plata drainage basin, along with two hazardous areas: Sierras de Córdoba in Argentina and Serra da Canastra in Brazil. This region was chosen due to the availability of the radiosonde launches required for comparison during 2016. Results: To characterize the regional performance of HI, we used data from the European Centre for Medium-Range Weather Forecast’s (ECMWF) reanalysis model (ERA Interim; Dee et al., Quarterly Journal of the Royal Meteorological Society 137: 553–597, 2011) for the period 2000 to 2016. A statistical analysis of the differences between the simulated HI from GPT2w (HI_GPT2w) and the HI values derived from radiosonde measurements (HI_R) was performed. The results showed that HI_GPT2w reproduced HI_R values about 50% of the time, most accurately for lowseverity HI values (2 to 3, on a scale of 2 to 6). In general, HI_GPT2w exhibited an underestimation of HI that increased as the index value increased. We analyzed how this underestimation affected the different HI variants calculated. To this end, we recall that each HI variant results from the sum of the stability and moisture terms. The stability term resulted from the temperature difference at different pressure levels while the moisture term is represented by the dew-point depression. Thus, the pressure level limits in the stability term define the HI variant. In this study, we used the Low-variant HI (950 and 850 hPa) and the Mid-variant HI (850 and 700 hPa). If we analyze this underestimation according to the HI variants, the moisture term is responsible for the Low variant underestimation and the stability term is responsible for the Mid variant. Conclusion: The simple application of GPT2w to extrapolate the vertical values of temperature and its dew-point depression is not enough to reproduce the Haines Index as it was measured from radiosonde measurements. Nevertheless, an improved application of GPT2w and the extrapolated saturation water vapor pressure by using the Integrated Water Vapor from Global Navigation Satellite System (GNSS-IWV) values could improve the results
Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría
description Background: The objective of this study was to look for a replacement to the radiosonde measurements that are necessary for the construction of an index of potential wildfire severity (i.e., Haines Index, HI) in areas of South America that have had few to no radiosonde launches. To this end, we tested the application of GPT2w, an empirical model originally developed for Global Navigation Satellite System (GNSS) meteorology. By using the GPT2w model, and starting from measured surface meteorological data (air pressure, temperature, and relative humidity), estimators of air temperature and dew-point air temperature at different pressure levels were generated. The selected testing area was a region of South America that included most of the Río de la Plata drainage basin, along with two hazardous areas: Sierras de Córdoba in Argentina and Serra da Canastra in Brazil. This region was chosen due to the availability of the radiosonde launches required for comparison during 2016. Results: To characterize the regional performance of HI, we used data from the European Centre for Medium-Range Weather Forecast’s (ECMWF) reanalysis model (ERA Interim; Dee et al., Quarterly Journal of the Royal Meteorological Society 137: 553–597, 2011) for the period 2000 to 2016. A statistical analysis of the differences between the simulated HI from GPT2w (HI_GPT2w) and the HI values derived from radiosonde measurements (HI_R) was performed. The results showed that HI_GPT2w reproduced HI_R values about 50% of the time, most accurately for lowseverity HI values (2 to 3, on a scale of 2 to 6). In general, HI_GPT2w exhibited an underestimation of HI that increased as the index value increased. We analyzed how this underestimation affected the different HI variants calculated. To this end, we recall that each HI variant results from the sum of the stability and moisture terms. The stability term resulted from the temperature difference at different pressure levels while the moisture term is represented by the dew-point depression. Thus, the pressure level limits in the stability term define the HI variant. In this study, we used the Low-variant HI (950 and 850 hPa) and the Mid-variant HI (850 and 700 hPa). If we analyze this underestimation according to the HI variants, the moisture term is responsible for the Low variant underestimation and the stability term is responsible for the Mid variant. Conclusion: The simple application of GPT2w to extrapolate the vertical values of temperature and its dew-point depression is not enough to reproduce the Haines Index as it was measured from radiosonde measurements. Nevertheless, an improved application of GPT2w and the extrapolated saturation water vapor pressure by using the Integrated Water Vapor from Global Navigation Satellite System (GNSS-IWV) values could improve the results
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/124065
url http://sedici.unlp.edu.ar/handle/10915/124065
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1933-9747
info:eu-repo/semantics/altIdentifier/doi/10.1186/s42408-018-0014-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
1-18
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783439325364224
score 12.982451