The self distributing virtual machine (SDVM): making computer clusters adaptive
- Autores
- Haase, Jan; Hofmann, Andreas; Waldschmidt, Klaus
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Self Distributing Virtual Machine (SDVM) is a middleware concept to form a parallel computing machine consisting of a any set of processing units, such as functional units in a processor or FPGA, processing units in a multiprocessor chip, or computers in a computer cluster. Its structure and functionality is biologically inspired aiming towards forming a combined workforce of independent units (”sites”), each acting on the same set of simple rules. The SDVM supports growing and shrinking the cluster at runtime as well as heterogeneous clusters. It uses the work-stealing principle to dynamically distribute the workload among all sites. The SDVM’s energy management targets the health of all sites by adjusting their power states according to workload and temperature. Dynamic reassignment of the current workload facilitates a new energy policy which focuses on increasing the reliability of each site. This paper presents the structure and the functionality of the SDVM.
1st IFIP International Conference on Biologically Inspired Cooperative Computing - Mechatronics and Computer Clusters
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Parallel processing
Clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24012
Ver los metadatos del registro completo
id |
SEDICI_c49716c6475cbd4fb0743462fd8078ff |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24012 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The self distributing virtual machine (SDVM): making computer clusters adaptiveHaase, JanHofmann, AndreasWaldschmidt, KlausCiencias InformáticasParallel processingClusteringThe Self Distributing Virtual Machine (SDVM) is a middleware concept to form a parallel computing machine consisting of a any set of processing units, such as functional units in a processor or FPGA, processing units in a multiprocessor chip, or computers in a computer cluster. Its structure and functionality is biologically inspired aiming towards forming a combined workforce of independent units (”sites”), each acting on the same set of simple rules. The SDVM supports growing and shrinking the cluster at runtime as well as heterogeneous clusters. It uses the work-stealing principle to dynamically distribute the workload among all sites. The SDVM’s energy management targets the health of all sites by adjusting their power states according to workload and temperature. Dynamic reassignment of the current workload facilitates a new energy policy which focuses on increasing the reliability of each site. This paper presents the structure and the functionality of the SDVM.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Mechatronics and Computer ClustersRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24012enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34632-5info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:41Zoai:sedici.unlp.edu.ar:10915/24012Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:41.386SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
title |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
spellingShingle |
The self distributing virtual machine (SDVM): making computer clusters adaptive Haase, Jan Ciencias Informáticas Parallel processing Clustering |
title_short |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
title_full |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
title_fullStr |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
title_full_unstemmed |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
title_sort |
The self distributing virtual machine (SDVM): making computer clusters adaptive |
dc.creator.none.fl_str_mv |
Haase, Jan Hofmann, Andreas Waldschmidt, Klaus |
author |
Haase, Jan |
author_facet |
Haase, Jan Hofmann, Andreas Waldschmidt, Klaus |
author_role |
author |
author2 |
Hofmann, Andreas Waldschmidt, Klaus |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Parallel processing Clustering |
topic |
Ciencias Informáticas Parallel processing Clustering |
dc.description.none.fl_txt_mv |
The Self Distributing Virtual Machine (SDVM) is a middleware concept to form a parallel computing machine consisting of a any set of processing units, such as functional units in a processor or FPGA, processing units in a multiprocessor chip, or computers in a computer cluster. Its structure and functionality is biologically inspired aiming towards forming a combined workforce of independent units (”sites”), each acting on the same set of simple rules. The SDVM supports growing and shrinking the cluster at runtime as well as heterogeneous clusters. It uses the work-stealing principle to dynamically distribute the workload among all sites. The SDVM’s energy management targets the health of all sites by adjusting their power states according to workload and temperature. Dynamic reassignment of the current workload facilitates a new energy policy which focuses on increasing the reliability of each site. This paper presents the structure and the functionality of the SDVM. 1st IFIP International Conference on Biologically Inspired Cooperative Computing - Mechatronics and Computer Clusters Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The Self Distributing Virtual Machine (SDVM) is a middleware concept to form a parallel computing machine consisting of a any set of processing units, such as functional units in a processor or FPGA, processing units in a multiprocessor chip, or computers in a computer cluster. Its structure and functionality is biologically inspired aiming towards forming a combined workforce of independent units (”sites”), each acting on the same set of simple rules. The SDVM supports growing and shrinking the cluster at runtime as well as heterogeneous clusters. It uses the work-stealing principle to dynamically distribute the workload among all sites. The SDVM’s energy management targets the health of all sites by adjusting their power states according to workload and temperature. Dynamic reassignment of the current workload facilitates a new energy policy which focuses on increasing the reliability of each site. This paper presents the structure and the functionality of the SDVM. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24012 |
url |
http://sedici.unlp.edu.ar/handle/10915/24012 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34632-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615816253800448 |
score |
13.070432 |