Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores
- Autores
- Ganz, Nancy; Ares, Alicia E.; Kuna, Horacio Daniel
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente a la predicción de fracasos en implantes dentales. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina. La experimentación es realizada con tres conjuntos de datos, un conjunto concerniente a historias clínicas de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y un conjunto obtenido del repositorio de datos kaggle. En comparación con los clasificadores individuales, el enfoque propuesto obtiene el mayor porcentaje de acierto de los fracasos, logrando un 75% de casos correctamente identificados.
Eje: Base de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Combinación de clasificadores
Clasificación
Aprendizaje Automático
Implantes Dentales
Predicción - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/103592
Ver los metadatos del registro completo
id |
SEDICI_c44fa5d6b4b2cd643e5eb4eb83f53089 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/103592 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadoresGanz, NancyAres, Alicia E.Kuna, Horacio DanielCiencias InformáticasCombinación de clasificadoresClasificaciónAprendizaje AutomáticoImplantes DentalesPredicciónEl campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente a la predicción de fracasos en implantes dentales. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina. La experimentación es realizada con tres conjuntos de datos, un conjunto concerniente a historias clínicas de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y un conjunto obtenido del repositorio de datos kaggle. En comparación con los clasificadores individuales, el enfoque propuesto obtiene el mayor porcentaje de acierto de los fracasos, logrando un 75% de casos correctamente identificados.Eje: Base de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2020-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf180-184http://sedici.unlp.edu.ar/handle/10915/103592spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3714-82-5info:eu-repo/semantics/reference/hdl/10915/103151info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:32Zoai:sedici.unlp.edu.ar:10915/103592Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:33.121SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
title |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
spellingShingle |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores Ganz, Nancy Ciencias Informáticas Combinación de clasificadores Clasificación Aprendizaje Automático Implantes Dentales Predicción |
title_short |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
title_full |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
title_fullStr |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
title_full_unstemmed |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
title_sort |
Predicción del resultado de oseointegración en implantes dentales mediante múltiples clasificadores |
dc.creator.none.fl_str_mv |
Ganz, Nancy Ares, Alicia E. Kuna, Horacio Daniel |
author |
Ganz, Nancy |
author_facet |
Ganz, Nancy Ares, Alicia E. Kuna, Horacio Daniel |
author_role |
author |
author2 |
Ares, Alicia E. Kuna, Horacio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Combinación de clasificadores Clasificación Aprendizaje Automático Implantes Dentales Predicción |
topic |
Ciencias Informáticas Combinación de clasificadores Clasificación Aprendizaje Automático Implantes Dentales Predicción |
dc.description.none.fl_txt_mv |
El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente a la predicción de fracasos en implantes dentales. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina. La experimentación es realizada con tres conjuntos de datos, un conjunto concerniente a historias clínicas de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y un conjunto obtenido del repositorio de datos kaggle. En comparación con los clasificadores individuales, el enfoque propuesto obtiene el mayor porcentaje de acierto de los fracasos, logrando un 75% de casos correctamente identificados. Eje: Base de Datos y Minería de Datos. Red de Universidades con Carreras en Informática |
description |
El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente a la predicción de fracasos en implantes dentales. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina. La experimentación es realizada con tres conjuntos de datos, un conjunto concerniente a historias clínicas de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y un conjunto obtenido del repositorio de datos kaggle. En comparación con los clasificadores individuales, el enfoque propuesto obtiene el mayor porcentaje de acierto de los fracasos, logrando un 75% de casos correctamente identificados. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/103592 |
url |
http://sedici.unlp.edu.ar/handle/10915/103592 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3714-82-5 info:eu-repo/semantics/reference/hdl/10915/103151 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 180-184 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616100956864512 |
score |
13.070432 |