Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores
- Autores
- Ganz, Nancy; Ares, Alicia E.; Kuna, Horacio Daniel
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente al campo de la odontología, como es el caso de los injertos o implantes dentales. En este trabajo se estudia la aplicación de varios clasificadores para evaluar la precisión de clasificación de forma integrada sobre un conjunto desbalanceado, referido a historias clínicas de implantes dentales recolectados en puntos característicos de la Provincia de Misiones, Argentina. El modelo abarcó la combinación de los clasificadores: Random Forest, SVC, KNN, Naive Bayes y un Perceptrón Multicapa. La integración de las predicciones se realiza a través del promedio de las mismas, empleando un umbral y pesos en los clasificadores. Como resultado, cada clasificador logró hasta un 68% de acierto de la clase minoritaria, mientras que la integración de todas las predicciones permitió alcanzar el 72% de casos correctamente identificados como fracaso.
XVI Workshop Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Ensamble de clasificadores
Predicción
Clase minoritaria
Postoperatorio
Implantes Dentales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/91034
Ver los metadatos del registro completo
id |
SEDICI_34335182e39167854ec996af2d551dd2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/91034 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadoresGanz, NancyAres, Alicia E.Kuna, Horacio DanielCiencias InformáticasEnsamble de clasificadoresPredicciónClase minoritariaPostoperatorioImplantes DentalesEl campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente al campo de la odontología, como es el caso de los injertos o implantes dentales. En este trabajo se estudia la aplicación de varios clasificadores para evaluar la precisión de clasificación de forma integrada sobre un conjunto desbalanceado, referido a historias clínicas de implantes dentales recolectados en puntos característicos de la Provincia de Misiones, Argentina. El modelo abarcó la combinación de los clasificadores: Random Forest, SVC, KNN, Naive Bayes y un Perceptrón Multicapa. La integración de las predicciones se realiza a través del promedio de las mismas, empleando un umbral y pesos en los clasificadores. Como resultado, cada clasificador logró hasta un 68% de acierto de la clase minoritaria, mientras que la integración de todas las predicciones permitió alcanzar el 72% de casos correctamente identificados como fracaso.XVI Workshop Bases de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf497-506http://sedici.unlp.edu.ar/handle/10915/91034spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:03Zoai:sedici.unlp.edu.ar:10915/91034Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:03.466SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
title |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
spellingShingle |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores Ganz, Nancy Ciencias Informáticas Ensamble de clasificadores Predicción Clase minoritaria Postoperatorio Implantes Dentales |
title_short |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
title_full |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
title_fullStr |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
title_full_unstemmed |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
title_sort |
Evaluación de la precisión de acierto de un conjunto desbalanceado mediante la combinación de clasificadores |
dc.creator.none.fl_str_mv |
Ganz, Nancy Ares, Alicia E. Kuna, Horacio Daniel |
author |
Ganz, Nancy |
author_facet |
Ganz, Nancy Ares, Alicia E. Kuna, Horacio Daniel |
author_role |
author |
author2 |
Ares, Alicia E. Kuna, Horacio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Ensamble de clasificadores Predicción Clase minoritaria Postoperatorio Implantes Dentales |
topic |
Ciencias Informáticas Ensamble de clasificadores Predicción Clase minoritaria Postoperatorio Implantes Dentales |
dc.description.none.fl_txt_mv |
El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente al campo de la odontología, como es el caso de los injertos o implantes dentales. En este trabajo se estudia la aplicación de varios clasificadores para evaluar la precisión de clasificación de forma integrada sobre un conjunto desbalanceado, referido a historias clínicas de implantes dentales recolectados en puntos característicos de la Provincia de Misiones, Argentina. El modelo abarcó la combinación de los clasificadores: Random Forest, SVC, KNN, Naive Bayes y un Perceptrón Multicapa. La integración de las predicciones se realiza a través del promedio de las mismas, empleando un umbral y pesos en los clasificadores. Como resultado, cada clasificador logró hasta un 68% de acierto de la clase minoritaria, mientras que la integración de todas las predicciones permitió alcanzar el 72% de casos correctamente identificados como fracaso. XVI Workshop Bases de Datos y Minería de Datos. Red de Universidades con Carreras en Informática |
description |
El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente al campo de la odontología, como es el caso de los injertos o implantes dentales. En este trabajo se estudia la aplicación de varios clasificadores para evaluar la precisión de clasificación de forma integrada sobre un conjunto desbalanceado, referido a historias clínicas de implantes dentales recolectados en puntos característicos de la Provincia de Misiones, Argentina. El modelo abarcó la combinación de los clasificadores: Random Forest, SVC, KNN, Naive Bayes y un Perceptrón Multicapa. La integración de las predicciones se realiza a través del promedio de las mismas, empleando un umbral y pesos en los clasificadores. Como resultado, cada clasificador logró hasta un 68% de acierto de la clase minoritaria, mientras que la integración de todas las predicciones permitió alcanzar el 72% de casos correctamente identificados como fracaso. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/91034 |
url |
http://sedici.unlp.edu.ar/handle/10915/91034 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1 info:eu-repo/semantics/reference/hdl/10915/90359 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 497-506 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616064353173504 |
score |
13.070432 |