Satellite Image Restoration using the VMCA Model
- Autores
- Anderson, Sharolyn; Fonstad, Mark Alan; Delrieux, Claudio
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- One of the most common patterns of the geographic landscape is the fractal or nearfractal form. Unfortunately, most traditional methods of spatial interpolation assume some type of continuous and regionalizeable variation of the underlying geographic form, an assumption at odds with the observed fractal properties of many landscapes. An extremely simple iterative algorithm, the voter model cellular automata (CA), produces discontinuous fractal patterns useful for interpolation while at the same preserving a realistic amount of spatial autocorrelation, extracted from neighboring existing data, also found in these landscapes. This adaptive algorithm is based on the principle of iteratively interpolating a missing data point using the value of a randomly selected neighbor cell. The model can also be extended to interpolate field-like variables by adding random deviations from the randomly chosen neighbor cell value. In this paper we explore the effect of satellite image restoration using a simple VMCA over obscured by clouds areas. This model is computationally advantageous, given its localty and restricted underlying computational model. Thus, an adequate computer implementation may perform significantly faster than other restoration methods, with roughly similar overall results. Also the local/scalable/parallelizable nature of CAs allows hardware FPGA implementation that might be embedded within the imager devices in satellites and remote sensors. On the other end, a GPU implementation might take advantage of highly specialized parallel processors capablde of restoring huge images in real time.
Eje: Computación gráfica, visualización e imágenes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Satellite Image Restoration
Visual
VMCA Model
Graphics
Real time - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/20823
Ver los metadatos del registro completo
id |
SEDICI_c20d54ab690dae8c6a9120e3be002c5f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/20823 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Satellite Image Restoration using the VMCA ModelAnderson, SharolynFonstad, Mark AlanDelrieux, ClaudioCiencias InformáticasSatellite Image RestorationVisualVMCA ModelGraphicsReal timeOne of the most common patterns of the geographic landscape is the fractal or nearfractal form. Unfortunately, most traditional methods of spatial interpolation assume some type of continuous and regionalizeable variation of the underlying geographic form, an assumption at odds with the observed fractal properties of many landscapes. An extremely simple iterative algorithm, the voter model cellular automata (CA), produces discontinuous fractal patterns useful for interpolation while at the same preserving a realistic amount of spatial autocorrelation, extracted from neighboring existing data, also found in these landscapes. This adaptive algorithm is based on the principle of iteratively interpolating a missing data point using the value of a randomly selected neighbor cell. The model can also be extended to interpolate field-like variables by adding random deviations from the randomly chosen neighbor cell value. In this paper we explore the effect of satellite image restoration using a simple VMCA over obscured by clouds areas. This model is computationally advantageous, given its localty and restricted underlying computational model. Thus, an adequate computer implementation may perform significantly faster than other restoration methods, with roughly similar overall results. Also the local/scalable/parallelizable nature of CAs allows hardware FPGA implementation that might be embedded within the imager devices in satellites and remote sensors. On the other end, a GPU implementation might take advantage of highly specialized parallel processors capablde of restoring huge images in real time.Eje: Computación gráfica, visualización e imágenesRed de Universidades con Carreras en Informática (RedUNCI)2006-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/20823enginfo:eu-repo/semantics/altIdentifier/isbn/950-9474-35-5info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:25Zoai:sedici.unlp.edu.ar:10915/20823Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:25.664SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Satellite Image Restoration using the VMCA Model |
title |
Satellite Image Restoration using the VMCA Model |
spellingShingle |
Satellite Image Restoration using the VMCA Model Anderson, Sharolyn Ciencias Informáticas Satellite Image Restoration Visual VMCA Model Graphics Real time |
title_short |
Satellite Image Restoration using the VMCA Model |
title_full |
Satellite Image Restoration using the VMCA Model |
title_fullStr |
Satellite Image Restoration using the VMCA Model |
title_full_unstemmed |
Satellite Image Restoration using the VMCA Model |
title_sort |
Satellite Image Restoration using the VMCA Model |
dc.creator.none.fl_str_mv |
Anderson, Sharolyn Fonstad, Mark Alan Delrieux, Claudio |
author |
Anderson, Sharolyn |
author_facet |
Anderson, Sharolyn Fonstad, Mark Alan Delrieux, Claudio |
author_role |
author |
author2 |
Fonstad, Mark Alan Delrieux, Claudio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Satellite Image Restoration Visual VMCA Model Graphics Real time |
topic |
Ciencias Informáticas Satellite Image Restoration Visual VMCA Model Graphics Real time |
dc.description.none.fl_txt_mv |
One of the most common patterns of the geographic landscape is the fractal or nearfractal form. Unfortunately, most traditional methods of spatial interpolation assume some type of continuous and regionalizeable variation of the underlying geographic form, an assumption at odds with the observed fractal properties of many landscapes. An extremely simple iterative algorithm, the voter model cellular automata (CA), produces discontinuous fractal patterns useful for interpolation while at the same preserving a realistic amount of spatial autocorrelation, extracted from neighboring existing data, also found in these landscapes. This adaptive algorithm is based on the principle of iteratively interpolating a missing data point using the value of a randomly selected neighbor cell. The model can also be extended to interpolate field-like variables by adding random deviations from the randomly chosen neighbor cell value. In this paper we explore the effect of satellite image restoration using a simple VMCA over obscured by clouds areas. This model is computationally advantageous, given its localty and restricted underlying computational model. Thus, an adequate computer implementation may perform significantly faster than other restoration methods, with roughly similar overall results. Also the local/scalable/parallelizable nature of CAs allows hardware FPGA implementation that might be embedded within the imager devices in satellites and remote sensors. On the other end, a GPU implementation might take advantage of highly specialized parallel processors capablde of restoring huge images in real time. Eje: Computación gráfica, visualización e imágenes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
One of the most common patterns of the geographic landscape is the fractal or nearfractal form. Unfortunately, most traditional methods of spatial interpolation assume some type of continuous and regionalizeable variation of the underlying geographic form, an assumption at odds with the observed fractal properties of many landscapes. An extremely simple iterative algorithm, the voter model cellular automata (CA), produces discontinuous fractal patterns useful for interpolation while at the same preserving a realistic amount of spatial autocorrelation, extracted from neighboring existing data, also found in these landscapes. This adaptive algorithm is based on the principle of iteratively interpolating a missing data point using the value of a randomly selected neighbor cell. The model can also be extended to interpolate field-like variables by adding random deviations from the randomly chosen neighbor cell value. In this paper we explore the effect of satellite image restoration using a simple VMCA over obscured by clouds areas. This model is computationally advantageous, given its localty and restricted underlying computational model. Thus, an adequate computer implementation may perform significantly faster than other restoration methods, with roughly similar overall results. Also the local/scalable/parallelizable nature of CAs allows hardware FPGA implementation that might be embedded within the imager devices in satellites and remote sensors. On the other end, a GPU implementation might take advantage of highly specialized parallel processors capablde of restoring huge images in real time. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/20823 |
url |
http://sedici.unlp.edu.ar/handle/10915/20823 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/950-9474-35-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615800994922496 |
score |
13.070432 |