Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae)
- Autores
- Rabinovich, Jorge Eduardo; Álvarez Costa, Agustín; Muñoz, Ignacio; Schilman, Pablo E.; Fountain Jones, Nicholas
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tackled this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infestans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar analyses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.
Centro de Estudios Parasitológicos y de Vectores - Materia
-
Ciencias Naturales
Machine learning
Hemiptera
Artificial intelligence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124633
Ver los metadatos del registro completo
id |
SEDICI_c0386bf7243012a2eccf5f7ca8c1f082 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124633 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae)Rabinovich, Jorge EduardoÁlvarez Costa, AgustínMuñoz, IgnacioSchilman, Pablo E.Fountain Jones, NicholasCiencias NaturalesMachine learningHemipteraArtificial intelligenceSpecies Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tackled this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infestans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar analyses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.Centro de Estudios Parasitológicos y de Vectores2021-03-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124633enginfo:eu-repo/semantics/altIdentifier/issn/1935-2727info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pntd.0008822info:eu-repo/semantics/reference/hdl/10915/124630info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:59Zoai:sedici.unlp.edu.ar:10915/124633Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:59.55SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
title |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
spellingShingle |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) Rabinovich, Jorge Eduardo Ciencias Naturales Machine learning Hemiptera Artificial intelligence |
title_short |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
title_full |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
title_fullStr |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
title_full_unstemmed |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
title_sort |
Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae) |
dc.creator.none.fl_str_mv |
Rabinovich, Jorge Eduardo Álvarez Costa, Agustín Muñoz, Ignacio Schilman, Pablo E. Fountain Jones, Nicholas |
author |
Rabinovich, Jorge Eduardo |
author_facet |
Rabinovich, Jorge Eduardo Álvarez Costa, Agustín Muñoz, Ignacio Schilman, Pablo E. Fountain Jones, Nicholas |
author_role |
author |
author2 |
Álvarez Costa, Agustín Muñoz, Ignacio Schilman, Pablo E. Fountain Jones, Nicholas |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Naturales Machine learning Hemiptera Artificial intelligence |
topic |
Ciencias Naturales Machine learning Hemiptera Artificial intelligence |
dc.description.none.fl_txt_mv |
Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tackled this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infestans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar analyses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance. Centro de Estudios Parasitológicos y de Vectores |
description |
Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tackled this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infestans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar analyses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124633 |
url |
http://sedici.unlp.edu.ar/handle/10915/124633 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1935-2727 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pntd.0008822 info:eu-repo/semantics/reference/hdl/10915/124630 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616179391397888 |
score |
13.069144 |