Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)

Autores
Rabinovich, Jorge Eduardo; Alvarez Costa, Agustin; Muñoz, Ignacio Joaquín; Schilman, Pablo Ernesto; Fountain Jones, Nicholas M.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacer-bate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tack-led this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infes-tans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatomi-nae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar anal-yses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.
Fil: Rabinovich, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina
Fil: Alvarez Costa, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Muñoz, Ignacio Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Schilman, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Fountain Jones, Nicholas M.. University of Tasmania; Australia
Materia
Machine-learning modelling
Triatoma infestans
Temperature
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182104

id CONICETDig_4cb89ecdfa8b5a4da0a01e777223617a
oai_identifier_str oai:ri.conicet.gov.ar:11336/182104
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)Rabinovich, Jorge EduardoAlvarez Costa, AgustinMuñoz, Ignacio JoaquínSchilman, Pablo ErnestoFountain Jones, Nicholas M.Machine-learning modellingTriatoma infestansTemperaturehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacer-bate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tack-led this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infes-tans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatomi-nae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar anal-yses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.Fil: Rabinovich, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Alvarez Costa, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Muñoz, Ignacio Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Schilman, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Fountain Jones, Nicholas M.. University of Tasmania; AustraliaPublic Library of Science2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182104Rabinovich, Jorge Eduardo; Alvarez Costa, Agustin; Muñoz, Ignacio Joaquín; Schilman, Pablo Ernesto; Fountain Jones, Nicholas M.; Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae); Public Library of Science; PLoS Neglected Tropical Diseases; 15; 3; 3-2021; 1-151935-27271935-2735CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pntd.0008822info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:15Zoai:ri.conicet.gov.ar:11336/182104instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:15.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
title Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
spellingShingle Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
Rabinovich, Jorge Eduardo
Machine-learning modelling
Triatoma infestans
Temperature
title_short Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
title_full Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
title_fullStr Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
title_full_unstemmed Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
title_sort Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae)
dc.creator.none.fl_str_mv Rabinovich, Jorge Eduardo
Alvarez Costa, Agustin
Muñoz, Ignacio Joaquín
Schilman, Pablo Ernesto
Fountain Jones, Nicholas M.
author Rabinovich, Jorge Eduardo
author_facet Rabinovich, Jorge Eduardo
Alvarez Costa, Agustin
Muñoz, Ignacio Joaquín
Schilman, Pablo Ernesto
Fountain Jones, Nicholas M.
author_role author
author2 Alvarez Costa, Agustin
Muñoz, Ignacio Joaquín
Schilman, Pablo Ernesto
Fountain Jones, Nicholas M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Machine-learning modelling
Triatoma infestans
Temperature
topic Machine-learning modelling
Triatoma infestans
Temperature
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacer-bate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tack-led this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infes-tans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatomi-nae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar anal-yses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.
Fil: Rabinovich, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina
Fil: Alvarez Costa, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Muñoz, Ignacio Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Schilman, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Fountain Jones, Nicholas M.. University of Tasmania; Australia
description Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacer-bate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tack-led this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infes-tans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatomi-nae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar anal-yses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182104
Rabinovich, Jorge Eduardo; Alvarez Costa, Agustin; Muñoz, Ignacio Joaquín; Schilman, Pablo Ernesto; Fountain Jones, Nicholas M.; Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae); Public Library of Science; PLoS Neglected Tropical Diseases; 15; 3; 3-2021; 1-15
1935-2727
1935-2735
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182104
identifier_str_mv Rabinovich, Jorge Eduardo; Alvarez Costa, Agustin; Muñoz, Ignacio Joaquín; Schilman, Pablo Ernesto; Fountain Jones, Nicholas M.; Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae); Public Library of Science; PLoS Neglected Tropical Diseases; 15; 3; 3-2021; 1-15
1935-2727
1935-2735
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pntd.0008822
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613241778470912
score 13.069144