Una red neuronal para series de comportamiento
- Autores
- Fonseca, Rocío Guadalupe; Bosch, María Candelaria; Barberis, Lucas Miguel; Kembro, Jackelyn Melissa; Flesia, Ana Georgina
- Año de publicación
- 2022
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Biología
redes neuronales artificiales
análisis de series de tiempo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/151636
Ver los metadatos del registro completo
id |
SEDICI_bfa4cf05cdddaa0a31d8429864f29423 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/151636 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Una red neuronal para series de comportamientoFonseca, Rocío GuadalupeBosch, María CandelariaBarberis, Lucas MiguelKembro, Jackelyn MelissaFlesia, Ana GeorginaCiencias InformáticasBiologíaredes neuronales artificialesanálisis de series de tiempoEl comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal.Sociedad Argentina de Informática e Investigación Operativa2022-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf61-61http://sedici.unlp.edu.ar/handle/10915/151636spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/264/215info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:06Zoai:sedici.unlp.edu.ar:10915/151636Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:06.677SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Una red neuronal para series de comportamiento |
title |
Una red neuronal para series de comportamiento |
spellingShingle |
Una red neuronal para series de comportamiento Fonseca, Rocío Guadalupe Ciencias Informáticas Biología redes neuronales artificiales análisis de series de tiempo |
title_short |
Una red neuronal para series de comportamiento |
title_full |
Una red neuronal para series de comportamiento |
title_fullStr |
Una red neuronal para series de comportamiento |
title_full_unstemmed |
Una red neuronal para series de comportamiento |
title_sort |
Una red neuronal para series de comportamiento |
dc.creator.none.fl_str_mv |
Fonseca, Rocío Guadalupe Bosch, María Candelaria Barberis, Lucas Miguel Kembro, Jackelyn Melissa Flesia, Ana Georgina |
author |
Fonseca, Rocío Guadalupe |
author_facet |
Fonseca, Rocío Guadalupe Bosch, María Candelaria Barberis, Lucas Miguel Kembro, Jackelyn Melissa Flesia, Ana Georgina |
author_role |
author |
author2 |
Bosch, María Candelaria Barberis, Lucas Miguel Kembro, Jackelyn Melissa Flesia, Ana Georgina |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Biología redes neuronales artificiales análisis de series de tiempo |
topic |
Ciencias Informáticas Biología redes neuronales artificiales análisis de series de tiempo |
dc.description.none.fl_txt_mv |
El comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal. Sociedad Argentina de Informática e Investigación Operativa |
description |
El comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/151636 |
url |
http://sedici.unlp.edu.ar/handle/10915/151636 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/264/215 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 61-61 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616265302278144 |
score |
13.070432 |