Una red neuronal para series de comportamiento

Autores
Fonseca, Rocío Guadalupe; Bosch, María Candelaria; Barberis, Lucas Miguel; Kembro, Jackelyn Melissa; Flesia, Ana Georgina
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series  corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Biología
redes neuronales artificiales
análisis de series de tiempo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/151636

id SEDICI_bfa4cf05cdddaa0a31d8429864f29423
oai_identifier_str oai:sedici.unlp.edu.ar:10915/151636
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Una red neuronal para series de comportamientoFonseca, Rocío GuadalupeBosch, María CandelariaBarberis, Lucas MiguelKembro, Jackelyn MelissaFlesia, Ana GeorginaCiencias InformáticasBiologíaredes neuronales artificialesanálisis de series de tiempoEl comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series  corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal.Sociedad Argentina de Informática e Investigación Operativa2022-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf61-61http://sedici.unlp.edu.ar/handle/10915/151636spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/264/215info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:06Zoai:sedici.unlp.edu.ar:10915/151636Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:06.677SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Una red neuronal para series de comportamiento
title Una red neuronal para series de comportamiento
spellingShingle Una red neuronal para series de comportamiento
Fonseca, Rocío Guadalupe
Ciencias Informáticas
Biología
redes neuronales artificiales
análisis de series de tiempo
title_short Una red neuronal para series de comportamiento
title_full Una red neuronal para series de comportamiento
title_fullStr Una red neuronal para series de comportamiento
title_full_unstemmed Una red neuronal para series de comportamiento
title_sort Una red neuronal para series de comportamiento
dc.creator.none.fl_str_mv Fonseca, Rocío Guadalupe
Bosch, María Candelaria
Barberis, Lucas Miguel
Kembro, Jackelyn Melissa
Flesia, Ana Georgina
author Fonseca, Rocío Guadalupe
author_facet Fonseca, Rocío Guadalupe
Bosch, María Candelaria
Barberis, Lucas Miguel
Kembro, Jackelyn Melissa
Flesia, Ana Georgina
author_role author
author2 Bosch, María Candelaria
Barberis, Lucas Miguel
Kembro, Jackelyn Melissa
Flesia, Ana Georgina
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Biología
redes neuronales artificiales
análisis de series de tiempo
topic Ciencias Informáticas
Biología
redes neuronales artificiales
análisis de series de tiempo
dc.description.none.fl_txt_mv El comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series  corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal.
Sociedad Argentina de Informática e Investigación Operativa
description El comportamiento de animales de laboratorio es estudiado usualmente por medio de la observación directa, utilizando catálogos de conductas predefinidas. Sin embargo la determinación de eventos en señales derivadas de sensores de alta precisión como los acelerómetros, es muy difícil de lograr por inspección, por lo cual es necesario entrenar métodos de clasificación usando datos sincronizados, segmentados manualmente, de series derivadas de videograbaciones, además de los datos de acelerómetros. En el (IIByT, CONICET-UNC) recolectamos datos de codornices japonesas con esas condiciones de laboratorio, para poder conformar una database de información de entrenamiento para el problema. También estudiamos la optimalidad de una red neuronal Long Short Time Memory (LSTM) entrenada con nuestros datos, los cuales son series multivariadas de las coordenadas espaciales del acelerometro, medidas cuando éste es colocado sobre el cuerpo del animal. Estas series  corresponden a la aceleración debida al propio movimiento y a la gravedad. Una característica de este tipo de red es que la información puede permanecer introduciendo bucles en el diagrama, por lo que pueden recordar estados previos y utilizar esta información para decidir cuál sería el siguiente paso. Esto las hace muy adecuadas para manejar series de tiempo, como estas relacionadas al comportamiento animal.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/151636
url http://sedici.unlp.edu.ar/handle/10915/151636
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/264/215
info:eu-repo/semantics/altIdentifier/issn/2451-7496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
61-61
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616265302278144
score 13.070432