Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos
- Autores
- Camele, Genaro
- Año de publicación
- 2024
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Hasperué, Waldo
- Descripción
- La tesis doctoral se centra en el desarrollo y evaluación de un framework para la aceleración de metaheurísticas en entornos distribuidos utilizando Apache Spark, con un enfoque particular en la optimización de la selección de características para la identificación de biomarcadores oncológicos. La motivación surge de la necesidad de superar las limitaciones de algunas plataformas existentes como Bioplat y Multiomics, y de proporcionar herramientas computacionales avanzadas y accesibles a la comunidad científica en el campo de la bioinformática y la oncología. El framework propuesto introduce estrategias inteligentes para la aceleración de metaheurísticas, diseñadas específicamente para mejorar la eficiencia y el rendimiento en su ejecución en entornos distribuidos, en particular en Apache Spark. Estas técnicas se han implementado en una nueva plataforma denominada Multiomix, que no sólo complementa las funcionalidades de sus predecesoras, sino que también supera sus limitaciones, ofreciendo una solución integral para el análisis de datos multiómicos. Un aspecto clave de esta tesis es la disponibilización de Multiomix como Software as a Service (SaaS), accesible a través de Internet. Este enfoque permite a múltiples usuarios trabajar de manera simultánea, democratizando el acceso a capacidades de cómputo avanzadas y facilitando la colaboración en la comunidad científica. El objetivo general de esta tesis consiste en evaluar la viabilidad y eficacia del framework propuesto para la aceleración de metaheurísticas en entornos distribuidos, con un enfoque particular en su aplicación para la selección de características en la identificación de biomarcadores oncológicos. Además, se busca demostrar cómo la implementación de este framework en una plataforma SaaS puede mejorar significativamente la accesibilidad y la colaboración en la investigación biomédica.
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
Balance de carga
Selección de características
Cómputo distribuído
Apache Spark
Biomarcadores
Bioinformática
Multiomix - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/176592
Ver los metadatos del registro completo
| id |
SEDICI_bc99b0108bbd92e50a599c82fe3e8f91 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/176592 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicosCamele, GenaroCiencias InformáticasBalance de cargaSelección de característicasCómputo distribuídoApache SparkBiomarcadoresBioinformáticaMultiomixLa tesis doctoral se centra en el desarrollo y evaluación de un framework para la aceleración de metaheurísticas en entornos distribuidos utilizando Apache Spark, con un enfoque particular en la optimización de la selección de características para la identificación de biomarcadores oncológicos. La motivación surge de la necesidad de superar las limitaciones de algunas plataformas existentes como Bioplat y Multiomics, y de proporcionar herramientas computacionales avanzadas y accesibles a la comunidad científica en el campo de la bioinformática y la oncología. El framework propuesto introduce estrategias inteligentes para la aceleración de metaheurísticas, diseñadas específicamente para mejorar la eficiencia y el rendimiento en su ejecución en entornos distribuidos, en particular en Apache Spark. Estas técnicas se han implementado en una nueva plataforma denominada Multiomix, que no sólo complementa las funcionalidades de sus predecesoras, sino que también supera sus limitaciones, ofreciendo una solución integral para el análisis de datos multiómicos. Un aspecto clave de esta tesis es la disponibilización de Multiomix como Software as a Service (SaaS), accesible a través de Internet. Este enfoque permite a múltiples usuarios trabajar de manera simultánea, democratizando el acceso a capacidades de cómputo avanzadas y facilitando la colaboración en la comunidad científica. El objetivo general de esta tesis consiste en evaluar la viabilidad y eficacia del framework propuesto para la aceleración de metaheurísticas en entornos distribuidos, con un enfoque particular en su aplicación para la selección de características en la identificación de biomarcadores oncológicos. Además, se busca demostrar cómo la implementación de este framework en una plataforma SaaS puede mejorar significativamente la accesibilidad y la colaboración en la investigación biomédica.Doctor en Ciencias InformáticasUniversidad Nacional de La PlataFacultad de InformáticaHasperué, Waldo2024-12-13info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/176592https://doi.org/10.35537/10915/176592spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:28:33Zoai:sedici.unlp.edu.ar:10915/176592Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:28:33.279SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| title |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| spellingShingle |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos Camele, Genaro Ciencias Informáticas Balance de carga Selección de características Cómputo distribuído Apache Spark Biomarcadores Bioinformática Multiomix |
| title_short |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| title_full |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| title_fullStr |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| title_full_unstemmed |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| title_sort |
Aceleración del proceso de selección de características en entornos Big Data : Aplicación en biomarcadores oncológicos |
| dc.creator.none.fl_str_mv |
Camele, Genaro |
| author |
Camele, Genaro |
| author_facet |
Camele, Genaro |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Hasperué, Waldo |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Balance de carga Selección de características Cómputo distribuído Apache Spark Biomarcadores Bioinformática Multiomix |
| topic |
Ciencias Informáticas Balance de carga Selección de características Cómputo distribuído Apache Spark Biomarcadores Bioinformática Multiomix |
| dc.description.none.fl_txt_mv |
La tesis doctoral se centra en el desarrollo y evaluación de un framework para la aceleración de metaheurísticas en entornos distribuidos utilizando Apache Spark, con un enfoque particular en la optimización de la selección de características para la identificación de biomarcadores oncológicos. La motivación surge de la necesidad de superar las limitaciones de algunas plataformas existentes como Bioplat y Multiomics, y de proporcionar herramientas computacionales avanzadas y accesibles a la comunidad científica en el campo de la bioinformática y la oncología. El framework propuesto introduce estrategias inteligentes para la aceleración de metaheurísticas, diseñadas específicamente para mejorar la eficiencia y el rendimiento en su ejecución en entornos distribuidos, en particular en Apache Spark. Estas técnicas se han implementado en una nueva plataforma denominada Multiomix, que no sólo complementa las funcionalidades de sus predecesoras, sino que también supera sus limitaciones, ofreciendo una solución integral para el análisis de datos multiómicos. Un aspecto clave de esta tesis es la disponibilización de Multiomix como Software as a Service (SaaS), accesible a través de Internet. Este enfoque permite a múltiples usuarios trabajar de manera simultánea, democratizando el acceso a capacidades de cómputo avanzadas y facilitando la colaboración en la comunidad científica. El objetivo general de esta tesis consiste en evaluar la viabilidad y eficacia del framework propuesto para la aceleración de metaheurísticas en entornos distribuidos, con un enfoque particular en su aplicación para la selección de características en la identificación de biomarcadores oncológicos. Además, se busca demostrar cómo la implementación de este framework en una plataforma SaaS puede mejorar significativamente la accesibilidad y la colaboración en la investigación biomédica. Doctor en Ciencias Informáticas Universidad Nacional de La Plata Facultad de Informática |
| description |
La tesis doctoral se centra en el desarrollo y evaluación de un framework para la aceleración de metaheurísticas en entornos distribuidos utilizando Apache Spark, con un enfoque particular en la optimización de la selección de características para la identificación de biomarcadores oncológicos. La motivación surge de la necesidad de superar las limitaciones de algunas plataformas existentes como Bioplat y Multiomics, y de proporcionar herramientas computacionales avanzadas y accesibles a la comunidad científica en el campo de la bioinformática y la oncología. El framework propuesto introduce estrategias inteligentes para la aceleración de metaheurísticas, diseñadas específicamente para mejorar la eficiencia y el rendimiento en su ejecución en entornos distribuidos, en particular en Apache Spark. Estas técnicas se han implementado en una nueva plataforma denominada Multiomix, que no sólo complementa las funcionalidades de sus predecesoras, sino que también supera sus limitaciones, ofreciendo una solución integral para el análisis de datos multiómicos. Un aspecto clave de esta tesis es la disponibilización de Multiomix como Software as a Service (SaaS), accesible a través de Internet. Este enfoque permite a múltiples usuarios trabajar de manera simultánea, democratizando el acceso a capacidades de cómputo avanzadas y facilitando la colaboración en la comunidad científica. El objetivo general de esta tesis consiste en evaluar la viabilidad y eficacia del framework propuesto para la aceleración de metaheurísticas en entornos distribuidos, con un enfoque particular en su aplicación para la selección de características en la identificación de biomarcadores oncológicos. Además, se busca demostrar cómo la implementación de este framework en una plataforma SaaS puede mejorar significativamente la accesibilidad y la colaboración en la investigación biomédica. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-13 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
| format |
doctoralThesis |
| status_str |
acceptedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/176592 https://doi.org/10.35537/10915/176592 |
| url |
http://sedici.unlp.edu.ar/handle/10915/176592 https://doi.org/10.35537/10915/176592 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783769902579712 |
| score |
12.982451 |