FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems
- Autores
- Basgall, María José; Naiouf, Ricardo Marcelo; Fernández, Alberto
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, a methodological data condensation approach for reducing tabular big datasets in classification problems is presented, named FDR2-BD. The key of our proposal is to analyze data in a dual way (vertical and horizontal), so as to provide a smart combination between feature selection to generate dense clusters of data and uniform sampling reduction to keep only a few representative samples from each problem area. Its main advantage is allowing the model’s predictive quality to be kept in a range determined by a user’s threshold. Its robustness is built on a hyper-parametrization process, in which all data are taken into consideration by following a k-fold procedure. Another significant capability is being fast and scalable by using fully optimized parallel operations provided by Apache Spark. An extensive experimental study is performed over 25 big datasets with different characteristics. In most cases, the obtained reduction percentages are above 95%, thus outperforming state-of-the-art solutions such as FCNN_MR that barely reach 70%. The most promising outcome is maintaining the representativeness of the original data information, with quality prediction values around 1% of the baseline.
Fil: Basgall, María José. Universidad de Granada; España. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
Fil: Fernández, Alberto. Universidad de Granada; España - Materia
-
APACHE SPARK
BIG DATA
CLASSIFICATION
DATA REDUCTION
PREPROCESSING TECHNIQUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150370
Ver los metadatos del registro completo
id |
CONICETDig_a94eca3398b0f8c54fa36acada5ed51d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150370 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problemsBasgall, María JoséNaiouf, Ricardo MarceloFernández, AlbertoAPACHE SPARKBIG DATACLASSIFICATIONDATA REDUCTIONPREPROCESSING TECHNIQUEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, a methodological data condensation approach for reducing tabular big datasets in classification problems is presented, named FDR2-BD. The key of our proposal is to analyze data in a dual way (vertical and horizontal), so as to provide a smart combination between feature selection to generate dense clusters of data and uniform sampling reduction to keep only a few representative samples from each problem area. Its main advantage is allowing the model’s predictive quality to be kept in a range determined by a user’s threshold. Its robustness is built on a hyper-parametrization process, in which all data are taken into consideration by following a k-fold procedure. Another significant capability is being fast and scalable by using fully optimized parallel operations provided by Apache Spark. An extensive experimental study is performed over 25 big datasets with different characteristics. In most cases, the obtained reduction percentages are above 95%, thus outperforming state-of-the-art solutions such as FCNN_MR that barely reach 70%. The most promising outcome is maintaining the representativeness of the original data information, with quality prediction values around 1% of the baseline.Fil: Basgall, María José. Universidad de Granada; España. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Naiouf, Ricardo Marcelo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; ArgentinaFil: Fernández, Alberto. Universidad de Granada; EspañaMolecular Diversity Preservation International2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150370Basgall, María José; Naiouf, Ricardo Marcelo; Fernández, Alberto; FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems; Molecular Diversity Preservation International; Electronics; 10; 15; 8-2021; 1-192079-9292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/10/15/1757info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics10151757info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:20Zoai:ri.conicet.gov.ar:11336/150370instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:21.161CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
title |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
spellingShingle |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems Basgall, María José APACHE SPARK BIG DATA CLASSIFICATION DATA REDUCTION PREPROCESSING TECHNIQUES |
title_short |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
title_full |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
title_fullStr |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
title_full_unstemmed |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
title_sort |
FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems |
dc.creator.none.fl_str_mv |
Basgall, María José Naiouf, Ricardo Marcelo Fernández, Alberto |
author |
Basgall, María José |
author_facet |
Basgall, María José Naiouf, Ricardo Marcelo Fernández, Alberto |
author_role |
author |
author2 |
Naiouf, Ricardo Marcelo Fernández, Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
APACHE SPARK BIG DATA CLASSIFICATION DATA REDUCTION PREPROCESSING TECHNIQUES |
topic |
APACHE SPARK BIG DATA CLASSIFICATION DATA REDUCTION PREPROCESSING TECHNIQUES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, a methodological data condensation approach for reducing tabular big datasets in classification problems is presented, named FDR2-BD. The key of our proposal is to analyze data in a dual way (vertical and horizontal), so as to provide a smart combination between feature selection to generate dense clusters of data and uniform sampling reduction to keep only a few representative samples from each problem area. Its main advantage is allowing the model’s predictive quality to be kept in a range determined by a user’s threshold. Its robustness is built on a hyper-parametrization process, in which all data are taken into consideration by following a k-fold procedure. Another significant capability is being fast and scalable by using fully optimized parallel operations provided by Apache Spark. An extensive experimental study is performed over 25 big datasets with different characteristics. In most cases, the obtained reduction percentages are above 95%, thus outperforming state-of-the-art solutions such as FCNN_MR that barely reach 70%. The most promising outcome is maintaining the representativeness of the original data information, with quality prediction values around 1% of the baseline. Fil: Basgall, María José. Universidad de Granada; España. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina Fil: Fernández, Alberto. Universidad de Granada; España |
description |
In this paper, a methodological data condensation approach for reducing tabular big datasets in classification problems is presented, named FDR2-BD. The key of our proposal is to analyze data in a dual way (vertical and horizontal), so as to provide a smart combination between feature selection to generate dense clusters of data and uniform sampling reduction to keep only a few representative samples from each problem area. Its main advantage is allowing the model’s predictive quality to be kept in a range determined by a user’s threshold. Its robustness is built on a hyper-parametrization process, in which all data are taken into consideration by following a k-fold procedure. Another significant capability is being fast and scalable by using fully optimized parallel operations provided by Apache Spark. An extensive experimental study is performed over 25 big datasets with different characteristics. In most cases, the obtained reduction percentages are above 95%, thus outperforming state-of-the-art solutions such as FCNN_MR that barely reach 70%. The most promising outcome is maintaining the representativeness of the original data information, with quality prediction values around 1% of the baseline. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150370 Basgall, María José; Naiouf, Ricardo Marcelo; Fernández, Alberto; FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems; Molecular Diversity Preservation International; Electronics; 10; 15; 8-2021; 1-19 2079-9292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150370 |
identifier_str_mv |
Basgall, María José; Naiouf, Ricardo Marcelo; Fernández, Alberto; FDR2-BD: A fast data reduction recommendation tool for tabular big data classification problems; Molecular Diversity Preservation International; Electronics; 10; 15; 8-2021; 1-19 2079-9292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/10/15/1757 info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics10151757 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269457517379584 |
score |
13.13397 |