Face recognition using SIFT descriptors and binary PSO with velocity control
- Autores
- Maulini, Juan Andrés; Lanzarini, Laura Cristina
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper, a strategy for face recognition based on SIFT descriptors of the images involved is presented. In order to reduce the number of false positives and computation time, a selection of the most representative feature descriptors is carried out by applying a variation of the binary PSO method. This version improves its operation by a suitable positioning of the velocity vector. To achieve this, a new modified version of the continuous gBest PSO algorithm is used. The results obtained allow stating that the descriptors can be successfully selected through the strategy proposed solving the problems initially mentioned.
Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
face recognition; SIFT descriptors; swarm intelligence; binary PSO; velocity control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/18622
Ver los metadatos del registro completo
id |
SEDICI_b9fb3d5d823cac00d1011a46fefb9adc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/18622 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Face recognition using SIFT descriptors and binary PSO with velocity controlMaulini, Juan AndrésLanzarini, Laura CristinaCiencias Informáticasface recognition; SIFT descriptors; swarm intelligence; binary PSO; velocity controlIn this paper, a strategy for face recognition based on SIFT descriptors of the images involved is presented. In order to reduce the number of false positives and computation time, a selection of the most representative feature descriptors is carried out by applying a variation of the binary PSO method. This version improves its operation by a suitable positioning of the velocity vector. To achieve this, a new modified version of the continuous gBest PSO algorithm is used. The results obtained allow stating that the descriptors can be successfully selected through the strategy proposed solving the problems initially mentioned.Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2011-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf111-120http://sedici.unlp.edu.ar/handle/10915/18622enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:53:36Zoai:sedici.unlp.edu.ar:10915/18622Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:53:36.522SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Face recognition using SIFT descriptors and binary PSO with velocity control |
title |
Face recognition using SIFT descriptors and binary PSO with velocity control |
spellingShingle |
Face recognition using SIFT descriptors and binary PSO with velocity control Maulini, Juan Andrés Ciencias Informáticas face recognition; SIFT descriptors; swarm intelligence; binary PSO; velocity control |
title_short |
Face recognition using SIFT descriptors and binary PSO with velocity control |
title_full |
Face recognition using SIFT descriptors and binary PSO with velocity control |
title_fullStr |
Face recognition using SIFT descriptors and binary PSO with velocity control |
title_full_unstemmed |
Face recognition using SIFT descriptors and binary PSO with velocity control |
title_sort |
Face recognition using SIFT descriptors and binary PSO with velocity control |
dc.creator.none.fl_str_mv |
Maulini, Juan Andrés Lanzarini, Laura Cristina |
author |
Maulini, Juan Andrés |
author_facet |
Maulini, Juan Andrés Lanzarini, Laura Cristina |
author_role |
author |
author2 |
Lanzarini, Laura Cristina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas face recognition; SIFT descriptors; swarm intelligence; binary PSO; velocity control |
topic |
Ciencias Informáticas face recognition; SIFT descriptors; swarm intelligence; binary PSO; velocity control |
dc.description.none.fl_txt_mv |
In this paper, a strategy for face recognition based on SIFT descriptors of the images involved is presented. In order to reduce the number of false positives and computation time, a selection of the most representative feature descriptors is carried out by applying a variation of the binary PSO method. This version improves its operation by a suitable positioning of the velocity vector. To achieve this, a new modified version of the continuous gBest PSO algorithm is used. The results obtained allow stating that the descriptors can be successfully selected through the strategy proposed solving the problems initially mentioned. Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this paper, a strategy for face recognition based on SIFT descriptors of the images involved is presented. In order to reduce the number of false positives and computation time, a selection of the most representative feature descriptors is carried out by applying a variation of the binary PSO method. This version improves its operation by a suitable positioning of the velocity vector. To achieve this, a new modified version of the continuous gBest PSO algorithm is used. The results obtained allow stating that the descriptors can be successfully selected through the strategy proposed solving the problems initially mentioned. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/18622 |
url |
http://sedici.unlp.edu.ar/handle/10915/18622 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 111-120 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615791664693248 |
score |
13.070432 |