Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación

Autores
Pousa, Adrián
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
De Giusti, Armando Eduardo
Descripción
Los procesadores multicore asimétricos o AMPs (AsymmetricMulticore Processors) constituyen una alternativa de bajo consumo energético a los procesadores multicore convencionales, que están formados por cores idénticos. Los AMPs integran cores rápidos y complejos de alto rendimiento, y cores más simples de bajo consumo, que ofrecen menores prestaciones. Investigaciones previas han demostrado que los AMPs ofrecen numerosos beneficios frente a los multicores convencionales, pero también plantean importantes desafíos para el software de sistema. Gran parte de las optimizaciones del software de sistema propuestas para AMPs se han realizado a nivel de sistema operativo (SO), principalmente mediante la inclusión de algoritmos de planificación conscientes de la asimetría en la plataforma. Una ventaja de esta aproximación es el hecho de que las aplicaciones no requieren modificaciones para explotar de forma efectiva los beneficios de los AMPs. La mayor parte de los algoritmos de planificación existentes para AMPs intentan optimizar el rendimiento global. Sin embargo, estos algoritmos degradan otros aspectos críticos como la justicia o la eficiencia energética de la plataforma. Además, dada su naturaleza, resulta complejo extender estas estrategias para soportar prioridades de usuario. El principal objetivo de esta tesis doctoral es superar estas limitaciones, mediante el diseño de estrategias de planificación más flexibles para AMPs. Asimismo, en esta tesis realizamos diversos estudios que muestran el impacto que la optimización de una métrica tiene en otras. Para mejorar el rendimiento global, la justicia o la eficiencia energética en AMPs, el planificador debe tener en cuenta el beneficio que cada aplicación alcanza al usar los distintos tipos de cores en un AMP. Se ha demostrado que no todos los hilos en ejecución de una carga de trabajo obtienen siempre el mismo beneficio relativo (speedup factor – SF) al usar un core de alto rendimiento frente a uno de bajo consumo. Tener en cuenta esta diversidad de SFs a la hora de distribuir los cores entre aplicaciones es clave para optimizar los distintos objetivos. Para esto, el SO debe determinar de forma efectiva el SF de cada hilo en tiempo de ejecución. Para hacer frente a este desafío, en esta tesis proponemos una metodología general para construir modelos de estimación de SF precisos basados en el uso de contadores hardware. La mayoría de los algoritmos de planificación existentes para AMPs, han sido evaluados empleando simuladores o plataformas asimétricas emuladas. Muchas de estas estrategias se han evaluado utilizando prototipos de planificadores en modo usuario. Por el contrario, en esta tesis doctoral, evaluamos los algoritmos propuestos en un entorno más realista: empleando implementaciones de los algoritmos en el kernel de SOs reales (OpenSolaris y GNU/Linux) y sobre hardwaremulticore asimétrico real.
Por convenio de colaboración entre la Universidad Nacional de La Plata (Argentina) y la Universidad Complutense de Madrid (España) esta tesis posee dos directores: Armando De Giusti por parte de la UNLP y Juan Carlos Saez Alcaide por parte de la UCM.
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
Planificación
eficiencia energética
HPC
Speedup Factor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/62960

id SEDICI_b87b9642200357bf4105ddd64b1209bd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/62960
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificaciónPousa, AdriánCiencias InformáticasPlanificacióneficiencia energéticaHPCSpeedup FactorLos procesadores multicore asimétricos o AMPs (AsymmetricMulticore Processors) constituyen una alternativa de bajo consumo energético a los procesadores multicore convencionales, que están formados por cores idénticos. Los AMPs integran cores rápidos y complejos de alto rendimiento, y cores más simples de bajo consumo, que ofrecen menores prestaciones. Investigaciones previas han demostrado que los AMPs ofrecen numerosos beneficios frente a los multicores convencionales, pero también plantean importantes desafíos para el software de sistema. Gran parte de las optimizaciones del software de sistema propuestas para AMPs se han realizado a nivel de sistema operativo (SO), principalmente mediante la inclusión de algoritmos de planificación conscientes de la asimetría en la plataforma. Una ventaja de esta aproximación es el hecho de que las aplicaciones no requieren modificaciones para explotar de forma efectiva los beneficios de los AMPs. La mayor parte de los algoritmos de planificación existentes para AMPs intentan optimizar el rendimiento global. Sin embargo, estos algoritmos degradan otros aspectos críticos como la justicia o la eficiencia energética de la plataforma. Además, dada su naturaleza, resulta complejo extender estas estrategias para soportar prioridades de usuario. El principal objetivo de esta tesis doctoral es superar estas limitaciones, mediante el diseño de estrategias de planificación más flexibles para AMPs. Asimismo, en esta tesis realizamos diversos estudios que muestran el impacto que la optimización de una métrica tiene en otras. Para mejorar el rendimiento global, la justicia o la eficiencia energética en AMPs, el planificador debe tener en cuenta el beneficio que cada aplicación alcanza al usar los distintos tipos de cores en un AMP. Se ha demostrado que no todos los hilos en ejecución de una carga de trabajo obtienen siempre el mismo beneficio relativo (speedup factor – SF) al usar un core de alto rendimiento frente a uno de bajo consumo. Tener en cuenta esta diversidad de SFs a la hora de distribuir los cores entre aplicaciones es clave para optimizar los distintos objetivos. Para esto, el SO debe determinar de forma efectiva el SF de cada hilo en tiempo de ejecución. Para hacer frente a este desafío, en esta tesis proponemos una metodología general para construir modelos de estimación de SF precisos basados en el uso de contadores hardware. La mayoría de los algoritmos de planificación existentes para AMPs, han sido evaluados empleando simuladores o plataformas asimétricas emuladas. Muchas de estas estrategias se han evaluado utilizando prototipos de planificadores en modo usuario. Por el contrario, en esta tesis doctoral, evaluamos los algoritmos propuestos en un entorno más realista: empleando implementaciones de los algoritmos en el kernel de SOs reales (OpenSolaris y GNU/Linux) y sobre hardwaremulticore asimétrico real.Por convenio de colaboración entre la Universidad Nacional de La Plata (Argentina) y la Universidad Complutense de Madrid (España) esta tesis posee dos directores: Armando De Giusti por parte de la UNLP y Juan Carlos Saez Alcaide por parte de la UCM.Doctor en Ciencias InformáticasUniversidad Nacional de La PlataFacultad de InformáticaDe Giusti, Armando Eduardo2017-10-11info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/62960https://doi.org/10.35537/10915/62960spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:51:34Zoai:sedici.unlp.edu.ar:10915/62960Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:51:34.384SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
title Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
spellingShingle Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
Pousa, Adrián
Ciencias Informáticas
Planificación
eficiencia energética
HPC
Speedup Factor
title_short Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
title_full Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
title_fullStr Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
title_full_unstemmed Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
title_sort Optimización de rendimiento, justicia y consumo energético en sistemas multicore asimétricos mediante planificación
dc.creator.none.fl_str_mv Pousa, Adrián
author Pousa, Adrián
author_facet Pousa, Adrián
author_role author
dc.contributor.none.fl_str_mv De Giusti, Armando Eduardo
dc.subject.none.fl_str_mv Ciencias Informáticas
Planificación
eficiencia energética
HPC
Speedup Factor
topic Ciencias Informáticas
Planificación
eficiencia energética
HPC
Speedup Factor
dc.description.none.fl_txt_mv Los procesadores multicore asimétricos o AMPs (AsymmetricMulticore Processors) constituyen una alternativa de bajo consumo energético a los procesadores multicore convencionales, que están formados por cores idénticos. Los AMPs integran cores rápidos y complejos de alto rendimiento, y cores más simples de bajo consumo, que ofrecen menores prestaciones. Investigaciones previas han demostrado que los AMPs ofrecen numerosos beneficios frente a los multicores convencionales, pero también plantean importantes desafíos para el software de sistema. Gran parte de las optimizaciones del software de sistema propuestas para AMPs se han realizado a nivel de sistema operativo (SO), principalmente mediante la inclusión de algoritmos de planificación conscientes de la asimetría en la plataforma. Una ventaja de esta aproximación es el hecho de que las aplicaciones no requieren modificaciones para explotar de forma efectiva los beneficios de los AMPs. La mayor parte de los algoritmos de planificación existentes para AMPs intentan optimizar el rendimiento global. Sin embargo, estos algoritmos degradan otros aspectos críticos como la justicia o la eficiencia energética de la plataforma. Además, dada su naturaleza, resulta complejo extender estas estrategias para soportar prioridades de usuario. El principal objetivo de esta tesis doctoral es superar estas limitaciones, mediante el diseño de estrategias de planificación más flexibles para AMPs. Asimismo, en esta tesis realizamos diversos estudios que muestran el impacto que la optimización de una métrica tiene en otras. Para mejorar el rendimiento global, la justicia o la eficiencia energética en AMPs, el planificador debe tener en cuenta el beneficio que cada aplicación alcanza al usar los distintos tipos de cores en un AMP. Se ha demostrado que no todos los hilos en ejecución de una carga de trabajo obtienen siempre el mismo beneficio relativo (speedup factor – SF) al usar un core de alto rendimiento frente a uno de bajo consumo. Tener en cuenta esta diversidad de SFs a la hora de distribuir los cores entre aplicaciones es clave para optimizar los distintos objetivos. Para esto, el SO debe determinar de forma efectiva el SF de cada hilo en tiempo de ejecución. Para hacer frente a este desafío, en esta tesis proponemos una metodología general para construir modelos de estimación de SF precisos basados en el uso de contadores hardware. La mayoría de los algoritmos de planificación existentes para AMPs, han sido evaluados empleando simuladores o plataformas asimétricas emuladas. Muchas de estas estrategias se han evaluado utilizando prototipos de planificadores en modo usuario. Por el contrario, en esta tesis doctoral, evaluamos los algoritmos propuestos en un entorno más realista: empleando implementaciones de los algoritmos en el kernel de SOs reales (OpenSolaris y GNU/Linux) y sobre hardwaremulticore asimétrico real.
Por convenio de colaboración entre la Universidad Nacional de La Plata (Argentina) y la Universidad Complutense de Madrid (España) esta tesis posee dos directores: Armando De Giusti por parte de la UNLP y Juan Carlos Saez Alcaide por parte de la UCM.
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
description Los procesadores multicore asimétricos o AMPs (AsymmetricMulticore Processors) constituyen una alternativa de bajo consumo energético a los procesadores multicore convencionales, que están formados por cores idénticos. Los AMPs integran cores rápidos y complejos de alto rendimiento, y cores más simples de bajo consumo, que ofrecen menores prestaciones. Investigaciones previas han demostrado que los AMPs ofrecen numerosos beneficios frente a los multicores convencionales, pero también plantean importantes desafíos para el software de sistema. Gran parte de las optimizaciones del software de sistema propuestas para AMPs se han realizado a nivel de sistema operativo (SO), principalmente mediante la inclusión de algoritmos de planificación conscientes de la asimetría en la plataforma. Una ventaja de esta aproximación es el hecho de que las aplicaciones no requieren modificaciones para explotar de forma efectiva los beneficios de los AMPs. La mayor parte de los algoritmos de planificación existentes para AMPs intentan optimizar el rendimiento global. Sin embargo, estos algoritmos degradan otros aspectos críticos como la justicia o la eficiencia energética de la plataforma. Además, dada su naturaleza, resulta complejo extender estas estrategias para soportar prioridades de usuario. El principal objetivo de esta tesis doctoral es superar estas limitaciones, mediante el diseño de estrategias de planificación más flexibles para AMPs. Asimismo, en esta tesis realizamos diversos estudios que muestran el impacto que la optimización de una métrica tiene en otras. Para mejorar el rendimiento global, la justicia o la eficiencia energética en AMPs, el planificador debe tener en cuenta el beneficio que cada aplicación alcanza al usar los distintos tipos de cores en un AMP. Se ha demostrado que no todos los hilos en ejecución de una carga de trabajo obtienen siempre el mismo beneficio relativo (speedup factor – SF) al usar un core de alto rendimiento frente a uno de bajo consumo. Tener en cuenta esta diversidad de SFs a la hora de distribuir los cores entre aplicaciones es clave para optimizar los distintos objetivos. Para esto, el SO debe determinar de forma efectiva el SF de cada hilo en tiempo de ejecución. Para hacer frente a este desafío, en esta tesis proponemos una metodología general para construir modelos de estimación de SF precisos basados en el uso de contadores hardware. La mayoría de los algoritmos de planificación existentes para AMPs, han sido evaluados empleando simuladores o plataformas asimétricas emuladas. Muchas de estas estrategias se han evaluado utilizando prototipos de planificadores en modo usuario. Por el contrario, en esta tesis doctoral, evaluamos los algoritmos propuestos en un entorno más realista: empleando implementaciones de los algoritmos en el kernel de SOs reales (OpenSolaris y GNU/Linux) y sobre hardwaremulticore asimétrico real.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-11
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/62960
https://doi.org/10.35537/10915/62960
url http://sedici.unlp.edu.ar/handle/10915/62960
https://doi.org/10.35537/10915/62960
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532313254690816
score 13.001348