A Geometrical Approach to Indefinite Least Squares Problems
- Autores
- Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Martínez Pería, Francisco Dardo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ∞ estimation problem.
Facultad de Ciencias Exactas - Materia
-
Matemática
Ciencias Exactas
Least squares
Oblique projections
Selfadjoint operators
Weighted generalized inverses - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/141580
Ver los metadatos del registro completo
id |
SEDICI_b425d58893db709fb241548760555fe5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/141580 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A Geometrical Approach to Indefinite Least Squares ProblemsGiribet, Juan IgnacioMaestripieri, Alejandra LauraMartínez Pería, Francisco DardoMatemáticaCiencias ExactasLeast squaresOblique projectionsSelfadjoint operatorsWeighted generalized inversesGiven Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ∞ estimation problem.Facultad de Ciencias Exactas2009-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf65-81http://sedici.unlp.edu.ar/handle/10915/141580enginfo:eu-repo/semantics/altIdentifier/issn/0167-8019info:eu-repo/semantics/altIdentifier/issn/1572-9036info:eu-repo/semantics/altIdentifier/doi/10.1007/s10440-009-9532-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:18Zoai:sedici.unlp.edu.ar:10915/141580Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:18.494SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A Geometrical Approach to Indefinite Least Squares Problems |
title |
A Geometrical Approach to Indefinite Least Squares Problems |
spellingShingle |
A Geometrical Approach to Indefinite Least Squares Problems Giribet, Juan Ignacio Matemática Ciencias Exactas Least squares Oblique projections Selfadjoint operators Weighted generalized inverses |
title_short |
A Geometrical Approach to Indefinite Least Squares Problems |
title_full |
A Geometrical Approach to Indefinite Least Squares Problems |
title_fullStr |
A Geometrical Approach to Indefinite Least Squares Problems |
title_full_unstemmed |
A Geometrical Approach to Indefinite Least Squares Problems |
title_sort |
A Geometrical Approach to Indefinite Least Squares Problems |
dc.creator.none.fl_str_mv |
Giribet, Juan Ignacio Maestripieri, Alejandra Laura Martínez Pería, Francisco Dardo |
author |
Giribet, Juan Ignacio |
author_facet |
Giribet, Juan Ignacio Maestripieri, Alejandra Laura Martínez Pería, Francisco Dardo |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura Martínez Pería, Francisco Dardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática Ciencias Exactas Least squares Oblique projections Selfadjoint operators Weighted generalized inverses |
topic |
Matemática Ciencias Exactas Least squares Oblique projections Selfadjoint operators Weighted generalized inverses |
dc.description.none.fl_txt_mv |
Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ∞ estimation problem. Facultad de Ciencias Exactas |
description |
Given Hilbert spaces ℋ and K , a (bounded) closed range operator C:H→K and a vector y∈K , consider the following indefinite least squares problem: find u∈ℋ such that 〈B(Cu−y),Cu−y〉=min x∈ℋ〈B(Cx−y),Cx−y, where B:K→K is a bounded selfadjoint operator. This work is devoted to give necessary and sufficient conditions for the existence of solutions of this abstract problem. Although the indefinite least squares problem has been thoroughly studied in finite dimensional spaces, the geometrical approach presented in this manuscript is quite different from the analytical techniques used before. As an application we provide some new sufficient conditions for the existence of solutions of an ℋ∞ estimation problem. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/141580 |
url |
http://sedici.unlp.edu.ar/handle/10915/141580 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0167-8019 info:eu-repo/semantics/altIdentifier/issn/1572-9036 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10440-009-9532-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 65-81 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260541489283072 |
score |
13.13397 |