Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems
- Autores
- Scolnik, Hugo Daniel; Echebest, Nélida Ester; Guardarucci, María Teresa
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to extend the applicability of an algorithm for solving inconsistent linear systems to the rank-deficient case, by employing incomplete projections onto the set of solutions of the augmented system Ax-r = b. The extended algorithm converges to the unique minimal norm solution of the least squares solutions. For that purpose, incomplete oblique projections are used, defined by means of matrices that penalize the norm of the residuals. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known projection methods.
Facultad de Ciencias Exactas
Facultad de Ingeniería - Materia
-
Ciencias Exactas
Incomplete oblique projections
Minimal norm solution
Rank-deficient least-squares problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82673
Ver los metadatos del registro completo
id |
SEDICI_5c6666ccea94d403c9d0e94c5fb86c5f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82673 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problemsScolnik, Hugo DanielEchebest, Nélida EsterGuardarucci, María TeresaCiencias ExactasIncomplete oblique projectionsMinimal norm solutionRank-deficient least-squares problemsThe aim of this paper is to extend the applicability of an algorithm for solving inconsistent linear systems to the rank-deficient case, by employing incomplete projections onto the set of solutions of the augmented system Ax-r = b. The extended algorithm converges to the unique minimal norm solution of the least squares solutions. For that purpose, incomplete oblique projections are used, defined by means of matrices that penalize the norm of the residuals. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known projection methods.Facultad de Ciencias ExactasFacultad de Ingeniería2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf175-191http://sedici.unlp.edu.ar/handle/10915/82673enginfo:eu-repo/semantics/altIdentifier/issn/1547-5816info:eu-repo/semantics/altIdentifier/doi/10.3934/jimo.2009.5.175info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:58:19Zoai:sedici.unlp.edu.ar:10915/82673Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:58:19.913SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
title |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
spellingShingle |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems Scolnik, Hugo Daniel Ciencias Exactas Incomplete oblique projections Minimal norm solution Rank-deficient least-squares problems |
title_short |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
title_full |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
title_fullStr |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
title_full_unstemmed |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
title_sort |
Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems |
dc.creator.none.fl_str_mv |
Scolnik, Hugo Daniel Echebest, Nélida Ester Guardarucci, María Teresa |
author |
Scolnik, Hugo Daniel |
author_facet |
Scolnik, Hugo Daniel Echebest, Nélida Ester Guardarucci, María Teresa |
author_role |
author |
author2 |
Echebest, Nélida Ester Guardarucci, María Teresa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Incomplete oblique projections Minimal norm solution Rank-deficient least-squares problems |
topic |
Ciencias Exactas Incomplete oblique projections Minimal norm solution Rank-deficient least-squares problems |
dc.description.none.fl_txt_mv |
The aim of this paper is to extend the applicability of an algorithm for solving inconsistent linear systems to the rank-deficient case, by employing incomplete projections onto the set of solutions of the augmented system Ax-r = b. The extended algorithm converges to the unique minimal norm solution of the least squares solutions. For that purpose, incomplete oblique projections are used, defined by means of matrices that penalize the norm of the residuals. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known projection methods. Facultad de Ciencias Exactas Facultad de Ingeniería |
description |
The aim of this paper is to extend the applicability of an algorithm for solving inconsistent linear systems to the rank-deficient case, by employing incomplete projections onto the set of solutions of the augmented system Ax-r = b. The extended algorithm converges to the unique minimal norm solution of the least squares solutions. For that purpose, incomplete oblique projections are used, defined by means of matrices that penalize the norm of the residuals. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known projection methods. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82673 |
url |
http://sedici.unlp.edu.ar/handle/10915/82673 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1547-5816 info:eu-repo/semantics/altIdentifier/doi/10.3934/jimo.2009.5.175 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 175-191 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532453302501376 |
score |
13.004268 |