Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada

Autores
Cardona, Juan Cruz; Banchero, Santiago
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La clasificación multi-etiquetas es un paradigma de aprendizaje supervisado que generaliza las técnicas clásicas de clasificación para abordar problemas en donde cada instancia de una colección se encuentra asociada a múltiples etiquetas. La mayor parte de los trabajos de investigación han sido realizados en contextos de aprendizaje por batch. Los ambientes de flujo continuo de datos (o streaming) presentan nuevos desafíos a esta área debido a las limitaciones de tiempo de respuesta y almacenamiento que acarrean. Se aplicaron algoritmos de clasificación multi-etiqueta a diversas colecciones de datos no estructuradas de referencia a partir de las cuales se simularon los streamings de datos. En este trabajo propone una estrategia de ensamble de algoritmos de clasificación multi-etiquetas con el objetivo de conseguir mejoras en la predicción. Los resultados han sido alentadores y la propuesta de ensambles utilizando algoritmos clásicos de clasificación multi-etiquetas mostraron rendimientos competitivos que mejoran en varios escenarios al estado del arte.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Multi-etiquetas
Streaming de datos
Clasificación
Ensambles
Votación
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140162

id SEDICI_b29be55c1362f46cb36a8374236ec089
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140162
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Clasificación multi-etiqueta con ensamble fijo por mayoría ponderadaCardona, Juan CruzBanchero, SantiagoCiencias InformáticasMulti-etiquetasStreaming de datosClasificaciónEnsamblesVotaciónLa clasificación multi-etiquetas es un paradigma de aprendizaje supervisado que generaliza las técnicas clásicas de clasificación para abordar problemas en donde cada instancia de una colección se encuentra asociada a múltiples etiquetas. La mayor parte de los trabajos de investigación han sido realizados en contextos de aprendizaje por batch. Los ambientes de flujo continuo de datos (o streaming) presentan nuevos desafíos a esta área debido a las limitaciones de tiempo de respuesta y almacenamiento que acarrean. Se aplicaron algoritmos de clasificación multi-etiqueta a diversas colecciones de datos no estructuradas de referencia a partir de las cuales se simularon los streamings de datos. En este trabajo propone una estrategia de ensamble de algoritmos de clasificación multi-etiquetas con el objetivo de conseguir mejoras en la predicción. Los resultados han sido alentadores y la propuesta de ensambles utilizando algoritmos clásicos de clasificación multi-etiquetas mostraron rendimientos competitivos que mejoran en varios escenarios al estado del arte.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf119-128http://sedici.unlp.edu.ar/handle/10915/140162spainfo:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-15.pdfinfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:34Zoai:sedici.unlp.edu.ar:10915/140162Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:34.455SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
title Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
spellingShingle Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
Cardona, Juan Cruz
Ciencias Informáticas
Multi-etiquetas
Streaming de datos
Clasificación
Ensambles
Votación
title_short Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
title_full Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
title_fullStr Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
title_full_unstemmed Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
title_sort Clasificación multi-etiqueta con ensamble fijo por mayoría ponderada
dc.creator.none.fl_str_mv Cardona, Juan Cruz
Banchero, Santiago
author Cardona, Juan Cruz
author_facet Cardona, Juan Cruz
Banchero, Santiago
author_role author
author2 Banchero, Santiago
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Multi-etiquetas
Streaming de datos
Clasificación
Ensambles
Votación
topic Ciencias Informáticas
Multi-etiquetas
Streaming de datos
Clasificación
Ensambles
Votación
dc.description.none.fl_txt_mv La clasificación multi-etiquetas es un paradigma de aprendizaje supervisado que generaliza las técnicas clásicas de clasificación para abordar problemas en donde cada instancia de una colección se encuentra asociada a múltiples etiquetas. La mayor parte de los trabajos de investigación han sido realizados en contextos de aprendizaje por batch. Los ambientes de flujo continuo de datos (o streaming) presentan nuevos desafíos a esta área debido a las limitaciones de tiempo de respuesta y almacenamiento que acarrean. Se aplicaron algoritmos de clasificación multi-etiqueta a diversas colecciones de datos no estructuradas de referencia a partir de las cuales se simularon los streamings de datos. En este trabajo propone una estrategia de ensamble de algoritmos de clasificación multi-etiquetas con el objetivo de conseguir mejoras en la predicción. Los resultados han sido alentadores y la propuesta de ensambles utilizando algoritmos clásicos de clasificación multi-etiquetas mostraron rendimientos competitivos que mejoran en varios escenarios al estado del arte.
Sociedad Argentina de Informática e Investigación Operativa
description La clasificación multi-etiquetas es un paradigma de aprendizaje supervisado que generaliza las técnicas clásicas de clasificación para abordar problemas en donde cada instancia de una colección se encuentra asociada a múltiples etiquetas. La mayor parte de los trabajos de investigación han sido realizados en contextos de aprendizaje por batch. Los ambientes de flujo continuo de datos (o streaming) presentan nuevos desafíos a esta área debido a las limitaciones de tiempo de respuesta y almacenamiento que acarrean. Se aplicaron algoritmos de clasificación multi-etiqueta a diversas colecciones de datos no estructuradas de referencia a partir de las cuales se simularon los streamings de datos. En este trabajo propone una estrategia de ensamble de algoritmos de clasificación multi-etiquetas con el objetivo de conseguir mejoras en la predicción. Los resultados han sido alentadores y la propuesta de ensambles utilizando algoritmos clásicos de clasificación multi-etiquetas mostraron rendimientos competitivos que mejoran en varios escenarios al estado del arte.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140162
url http://sedici.unlp.edu.ar/handle/10915/140162
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-15.pdf
info:eu-repo/semantics/altIdentifier/issn/2683-8966
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.format.none.fl_str_mv application/pdf
119-128
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616234699587584
score 13.070432